Distributed Uplink Scheduling in EV-DO Rev. A Networks

Ashwin Sridharan (Sprint Nextel) Ramesh Subbaraman, Roch Guérin (ESE, University of Pennsylvania)

Overview of Problem

- Most modern wireless systems
 - Deliver high performance through tight control of transmissions by the Base Station (which devices, when & at what power)
- Most modern wireless devices
 - Run a broad range of applications with different communication needs (voice, video, web, email, SMS)
- Centralizing all decisions at the base station lacks flexibility and scalability
 - Latest wireless standards include mechanisms for partially delegating transmission decisions to devices
- But there is a cost in giving devices autonomy in making independent transmission decisions?
 - Sub-optimal resources sharing can impact overall throughput
- How big is the problem?
- What policies/mechanisms to best mitigate those effects?

System Overview

Overview of Results

- Assessing the impact of independent (uplink) user transmissions
 - Saturated, homogenous users
 - Randomized policies (transmission probability p)
 - Optimal value for p with significant impact on throughput
 - Threshold behavior as a function of system load
- Realizing optimized distributed transmissions in token bucket controlled systems
 - Selecting transmission probabilities to approximate optimal policies under bucket constraints

Outline of Talk

- A short primer on wireless transmissions
 - CDMA uplink
 - EV-DO Rev. A operation
- Previous works
- Modeling distributed transmission decisions
 - Analysis of randomized policies
- Emulating optimal policies
 - Token-bucket controlled systems
- Extensions of results and future work

Overview of CDMA Uplink

- CDMA uplink is interference limited
 - Each user has a spreading "orthogonal" code
 - Allows simultaneous transmissions
 - However, users interfere due to multi-path effects
- Users can select among multiple (discrete) transmission rates
 - Control loop based on pilot signal equalizes channel among users
 - Transmitted power is proportional to pilot strength AND selected rate

Uplink Operation

- Pilot P_i transmitted by device i=1,...,n+1
 - Pilot signals are power controlled by BS to all be received with the same target SINR $1/\varPhi$

$$\frac{1}{\phi} = \frac{G_{loss}^{i} P_{i}}{\sigma^{2} + \theta_{Pilot} \sum_{j \neq i} G_{loss}^{j} P_{j}} \Longrightarrow G_{loss}^{i} P_{i} = \Delta = \frac{\sigma^{2}}{\phi - n\theta_{Pilot}}, \forall i = 1, \dots, n+1$$

• G_{loss}^{i} : Path loss; θ_{Pilot} : Orthogonality factor; σ^{2} : Noise

- User *i* transmit power = $P_i \cdot TxT2P[R]$
 - $-R \in \Re$: Target data rate from discrete set \Re
 - TxT2P[R] : Proportionality factor relative to Pilot
 - User spends TxT2P[R] power tokens to transmit at rate R

Sample *TxT2P*[*R*] Values

Target Data Rate	TxT2P[R] dB	
0	-∞	
9.6 kbps	4.5	
19.2 kbps	6.75	
38.4 kbps	9.75	
76.8 kbps	13.25	
153.6 kbps	18.5	

CDMA Uplink Interference Model

$$SINR_{i}(R_{i}) = \frac{G(R_{i}) \cdot G_{loss}^{i} \cdot P_{D}^{i}(R_{i})}{\sigma^{2} + \theta \sum_{j \neq i} G_{loss}^{j} \cdot P_{D}^{j}(R_{j})}, \theta: \text{Data orthogonality factor}$$

$$G(R_i) = \frac{W}{R_i}$$
: Processing Gain and $P_D^i(R_i) = P_i \cdot TxT2P[R_i]$

$$\Rightarrow SINR_{i}(R_{i}) = \frac{G(R_{i}) \cdot TxT2P[R_{i}] \cdot \Delta}{\sigma^{2} + \theta \sum_{j \neq i} TxT2P[R_{j}] \cdot \Delta}, \Delta = \frac{\sigma^{2}}{\phi - n\theta_{Pilot}}$$

- Interferences from other users
 - The higher the rate a user chooses, the more interference it creates!

No Channel Effects (Perfect Power Control)

TT7

Our Problem

$$SINR_{i}(R_{i}) = \frac{G(R_{i}) \cdot TxT2P[R_{i}] \cdot \Delta}{\sigma^{2} + \theta \sum_{j \neq i} TxT2P[R_{j}] \cdot \Delta}, i = 1, \dots, n+1$$

- Users make independent transmission and rate selection decisions
 - Greedy behavior by individual users can affect overall performance
- What guidelines to mitigate negative impact of independent decisions

Previous Work

- Extensive work on rate allocation and power control
 - Assumes continuous transmission (no scheduling).
- Scheduling in CDMA ad-hoc networks
 - Assumes synchronization, contention resolution.
- Closest work that of [3], [4]
 - Scheduling in cellular CDMA.
 - Solves centralized global allocation numerically.

Our Initial Model

- Homogenous, unconstrained users
 - All users (n+1 users in a sector) employ the same policy
 - Users always have data and are able to transmit whenever the policy schedules a transmission
- Probabilistic On-Off transmission policy
 - Transmit at rate R in a slot with probability p
 - Transmit power is therefore 0 with probability 1-p and $\sim TxT2P[R]$ with probability p
- Simple but useful model
 - Similar to Aloha
 - But with a contention model based on soft interferences (CDMA) rather than "collisions"
- Questions
 - At what rate R should a user transmit?
 - How often (what *p* value) should a user transmit?

Main Results

- There exists an optimal p^* (maximizes $\hat{C}(p)$)
 - If $\delta \ge 1$ then $p^*=1$ If $\delta < 1$ then $p^* < 1$ $\delta = \frac{\phi n\theta_{Pilot}}{\theta \cdot TxT2P[R]}$

 - In both cases p^* satisfies the following equality $\sum_{i=0}^{n} \frac{1}{j+\delta} \binom{n}{j} p^{*j} (1-p^{*})^{n-j} = \frac{1}{(n+1)p^{*}-1+\delta}$
 - With few (many) users, and/or low (high) target rate R, users should transmit (in)frequently
- Higher target rates always achieve higher throughput, i.e., $\hat{C}(p_1^*, R_1) > \hat{C}(p_2^*, R_2)$, if $R_1 > R_2$
 - In the absence of other constraints

Distributed Control

- Token bucket mechanism available in EV-DO Rev. A and HSUPA to "control" device transmissions
 - Token bucket depth $\sigma \, {\rm and} \, {\rm token} \, {\rm fill} \, {\rm rate} \, \rho \, {\rm are}$ controlled by Base Station
 - A device needs TxT2P[R] tokens to transmit at rate R
 - Aimed at limiting peak and average power to satisfy fairness and QoS constraints
- Question: How does the presence of a token bucket affect the choice of "good" transmission decisions by devices?

Accounting for Token Buckets

- Given a token bucket configuration (σ,ρ)
 - What are the optimal p^* and K values?
- Two-step formulation
 - 1. Account for impact of token bucket on transmission decisions
 - Transmissions conditioned on having at least K tokens
 - 2. Explore possible combinations of p and K values
 - Note that optimality of higher rates need not hold any more because of token constraints (token efficiency)

Token Efficiency

 With 24 users transmission at 153.6kbps yields a higher throughput but a lower token efficiency than transmission at 76.8kbps

Impact of Token Bucket

Analysis vs. Reality

	Token Bucket: $\sigma = 21.5 dB$; $\rho = 7 dB$					
Rate	Analysis		Simulations			
(kbps)			(bounded rate model)			
	p^*_{A}	C^*_{A}	p^*_{sim}	C [*] _{sim}	$C_{sim}(p^*_A)$	
76.8	1.0	26.4	0.35	17.84	16.56	
153.6	0.21	42.9	0.25	10.63	10.59	

- Expected inaccuracies because of bounded rate
 - But actual impact on throughput is small

Extensions & Future Work

- Recent results
 - Established that similar results also hold for the *bounded* rate model
 - Characterized optimum *centralized* schedule
 - A benchmark against to compare distributed policies
 - A combinatorial problem because of discrete rate values
- Extensions
 - Investigating the impact/use of token bucket for its "original" purpose, namely, service differentiation
 - Rate vs. delay performance targets

Relevant References

- 1. P. Venkitasubramaniam, S. Adireddy, and L. Tong, "Opportunistic ALOHA and cross-layer design in sensor networks." Proc. IEEE MILCOM, Boston, MA, October 2003.
- 2. P. Venkitasubramaniam, Q. Zhao, and L. Tong, "Sensor networks with multiple mobile access points." Proc. 38th Annual Conference on Information Systems and Sciences, Princeton, NJ, March 2004.
- 3. K. Kumaran, L. Qian, "Uplink Scheduling in CDMA Packet-Data Systems", INFOCOM 2003.
- 4. R. Cruz, A. Santhanam, "<u>Optimal Routing, Link</u> Scheduling and Power Control in Multi-Hop Wireless Networks", INFOCOM 2003.