Assessing the Potential Opportunities of User-Provided Connectivity

Roch Guérin Washington University in St. Louis

> Workshop on Information & Communication Systems and their Application to Vertical Sectors

Montevideo, Uruguay, March 16-18, 2015

Acknowledgments

- This talk is based on joint work with M. H. Afrasiabi (Ph.D. student at Penn) and was funded by NSF grant CNS-0915982
- All errors and/or lack of clarity are, however, my own doing
- More details can be found at

[1] M. H. Afrasiabi and R. Guérin, "*Exploring User-Provided Connectivity*." To appear in ACM Transactions on Networking, November 2014 (full-length version available at <u>http://openscholarship.wustl.edu/cse_research/157/</u>)

[2] M. H. Afrasiabi and R. Guérin, "*Pricing Strategies for User-Provided Connectivity Services*." Proc. IEEE INFOCOM 2012 mini-conference, Orlando, FL, March 2012.

[3] M. H. Afrasiabi and R. Guérin, "*Exploring User-Provided Connectivity - A Simple Model*." Proc. ICQT'11 Workshop, Paris, France, October 2011.

Premises

- The rise of the sharing economy
 - Car sharing, *e.g.*, Uber, Lyft, RelayRides, Zipcar, car2go, etc.
 - Home sharing, *e.g.*, Airbnb, HomeAway, VRBO, Wimdu, 9flats, etc.
 - ⇒ Connectivity sharing: FON, AnyFi, airfy, (KeyWifi), Comcast XFINITY WiFi sharing, etc.
- The user as the infrastructure
 - Organic growth
 - Lower costs

But when and how does it work or be made to work?

Washington University in St. Louis

Engineering

The FON Model (Over 14 Millions Users)

- FON users trade ability to access other users' WiFi hotspots for reciprocation (*i.e.*, allowing other FON users to access their own WiFi hotspot)
- Alternative options are also possible, *e.g.*, provide access in exchange for compensation but without reciprocation rights

Framing the Investigation

Key features behind a "user as the network" system

- The network value depends on adoption
 - More users means broader coverage
 - But, with more users, having to share (whether at home or on the road) becomes more likely
- It also depends on how often users need access to and can access shared resources
 - FON's main benefit is while "roaming"
 - FON is only useful if you can find a FON spot
- Finally, it depends on cost, pricing, and possible "compensation" (for sharing)

Methodology

- Develop and analyze a "stylized" analytical model
 - Simplifying assumptions for analytical tractability
 - Explore solutions' structure
 - Extract insight and guidelines
- Validation through numerical evaluation and simulations
 - Relaxation of simplifying assumptions
 - Do major outcomes still (qualitatively) hold?

High-Level Model Definition

- Consider a *service* offered to a (very) large population of *heterogeneous* users
- Users evaluate the service and adopt (purchase), only if they derive positive value from it
 - Value is measured through a *utility* function incorporating different parameters that characterize the service and its users
 - As mentioned, a key aspect of a FON-like service is that its value *changes* with its adoption (because of positive and negative externalities)

Specifying The Model

- Users' heterogeneity is in their *roaming* propensity θ , $\theta \in [0,1]$
 - The main feature of a FON-like service is connectivity while away from home
- Utility of user with roaming value θ given a set of adopters Θ :

 $U(\Theta,\theta) = F(\theta,\kappa(\Theta)) + G(m(\Theta)) - p(\Theta,\theta)$

- F(.,.): value of connectivity (at home and while roaming)
 - $\kappa(\Theta)$: service coverage given Θ
- G(.): (negative) impact of roaming traffic, and positive impact of possible compensation
 - $m(\Theta)$: volume of roaming traffic generated by Θ adopters
- $-p(\Theta, \theta)$: service price for user θ , given Θ

User θ adopts iff $U(\Theta, \theta) > 0$

Making Things Tractable

(To Facilitate Analytical Insight)

- Linear value functions and uniform distributions
 - Value is proportional to frequency of connectivity
 - θ is uniformly distributed in [0,1]
 - Users are uniformly distributed over service area
 - Service coverage κ equals adoption level x
 - Roaming patterns are uniform over service area
 - Roaming traffic *m* is evenly distributed across adopters
 - Each user contributes one unit of traffic
- Utility is then of the form

 $U(\Theta,\theta) = (1-\theta) \gamma + \theta x(\Theta) - cm(\Theta) - p(\Theta,\theta)$

- γ is value of home connectivity, *r* is value of roaming connectivity, and *c* is impact of roaming traffic (minus any compensation) – We assume c < r

at home roaming finding connectivity

Questions of Interest

- When can the service succeed and generate substantial value?
 - Maximum total welfare?
 - When are maximum welfare and maximum adoption congruent?
- What pricing strategies?
 - Pricing controls
 - Users adoption
 - Provider's ability to extract welfare from users
 - Whether welfare or profit is maximized, or both
 - Complexity of implementation (how much information)

A Two-Prong Investigation

- 1. Characterizing system welfare
 - How useful is the service and for whom?
- 2. Exploring pricing strategies and their impact
 - A benchmark: Discriminatory pricing
 - Four practical pricing strategies with different levels of implementation complexity

1.2

v(⁽⁾, x=0.2) 90

0.4

0.2

1.2

Where Is The Value in UPC? Value of user θ : $(1 - \theta)\gamma + \theta rx - cm(\Theta) - e$, e = cost

- Different users see different changes in the value they contribute as 🖗 🕫 adoption varies
 - Low θ users see *decreases* in utility as *x* increases
 - High θ users see *increases* in utility as x increases

0.8 6.0 (A' ×) 6.0

0.4

0.2

0.2

0.4

12

Maximizing Welfare Value of user θ : $(1 - \theta)\gamma + \theta rx - cm(\Theta) - e$, e = cost

- Two main welfare regimes
 - 1. $\gamma \leq (r c)$, welfare is maximized at full or zero adoption depending on service cost, *e*
 - 2. $\gamma > (r c)$, intermediate regime can emerge
- Intuition: When home connectivity value is
 - low relative to the net value of roaming connectivity, service cost is the main factor
 - high relative to the net value of roaming connectivity, limiting adoption can be preferable when service cost is high

From Welfare to Profit

- Provider seeks control on converting welfare into profit
- Pricing is the tool that realizes this goal
 - Users' heterogeneity implies pricing heterogeneity
 - Pricing also affects adoption (service value varies)
- Discriminatory pricing as an impractical benchmark
 - Each user's price set to "value + cost ε ", $\varepsilon > 0$

• $p(\Theta, \theta) = [(1 - \theta)\gamma + \theta rx - cm(\Theta) - e] + e - \varepsilon$

- Realizes full adoption (all users have positive utility $\varepsilon > 0$)
- Can arbitrarily adjust transfer of welfare between users and provider
- Note: Setting $p(\Theta, \theta) = e$, also results in a provider's profit of 0, but does so very differently (more on this later)

Pricing Strategies

- We investigate four (practical) pricing policies that offer different trade-offs between efficiency and complexity
 - 1. <u>Usage based</u> pricing, p_h per unit of traffic from home and p_r per unit of traffic while roaming
 - <u>Hybrid</u> pricing, fixed price p_h for home connectivity, and 2. p_r per unit of traffic while roaming
 - <u>Fixed</u> price p for home and roaming connectivity (FON 3. model)
 - Pricing <u>options</u>: Users choose the best of two alternatives 4.
 - Fixed price p_h for home connectivity and free roaming a.
 - Fixed price p_h for home connectivity, p_r per unit of traffic while b. roaming, and compensation of b per unit of roaming traffic using their home access 15

Usage-Based Pricing

- Mimics discriminatory pricing (based on roaming profile, θ)
 - $p(u_h, u_r) = p_h \cdot u_h + p_r \cdot u_r a$, (*a* is allowance, and u_h and u_r are home and roaming usages, respectively)

 $p_{\theta} = p_h(1 - \theta) + p_r \theta x(\Theta) - a$

- $U(\Theta, \theta) = \gamma(1 \theta) + r\theta x(\Theta) cm(\Theta) p_h(1 \theta) p_r\theta x(\Theta) + a$ Set $p_h = \gamma$ and $p_r = r$, $\Rightarrow U(\Theta, \theta) = a - cm(\Theta)$, $\forall \theta$, *i.e.*, for all users
- Full adoption, *i.e.*, x([0,1]) = 1, (hence, maximum welfare) is readily realized by setting a > cm([0,1]) (= c/2 for uniform roaming traffic)
 ⇒ All users have the *same* positive utility
- Allowance, *a*, is a "control knob" for *arbitrarily* shifting welfare from users to provider (from 0 to max value)

Usage-Based Pricing Summary

- A highly effective though complex policy
 - Can simultaneously maximize welfare and profit
 - Can be "tuned" to arbitrarily shift welfare from users to provider
- Note: Maximizing welfare may require *subsidies*

$$-p_{\theta} = \gamma(1-\theta) + r\theta - a = \gamma - a + \theta(r-\gamma)$$

• $p_{\theta} < 0 \Leftrightarrow \theta < (a - \gamma)/(r - \gamma)$

- Sedentary users must be enticed to stay when value of home connectivity, γ , is low compared to allowance, *a*

Hybrid Pricing

• Fixed-price, p_h , at home, and usage-based roaming pricing, p_r

$$- p(u_r) = p_h + p_r \cdot u_r = p_h + p_r \theta x(\Theta)$$

$$- U(\Theta, \theta) = \gamma(1 - \theta) + r \theta x(\Theta) - cm(\Theta) - p_h - p_r \theta x(\Theta)$$

$$= (\gamma - cm(\Theta) - p_h) + \theta(rx(\Theta) - \gamma - p_r x(\Theta))$$

$$= (\gamma - c/2 - p_h) + \theta(r - \gamma - p_r), \text{ at full adoption, } x = 1$$

- Full adoption is *unique* equilibrium iff
 - $-\theta = 0$ user has positive utility, *i.e.*, $p_h < \gamma c/2$
 - $-\theta = 1$ user has positive utility, *i.e.*, $r c/2 > p_r + p_h$
 - And either $\gamma < c$, or when $\gamma \ge c$, a more complex condition that upper-bounds p_h based on a decreasing function of p_r
 - \Rightarrow The latter can prevent recouping all welfare as profit ¹⁸

Washington University in St.Louis Engineering Max Profit vs. Max Welfare Adopters Adopters x=0.000, m=0.000 t=1, t=1, x=1.000, m=0.500 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 (*θ*) (*θ*) 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.40.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0

• Welfare = profit $\Rightarrow p_h = \gamma - c/2 - \varepsilon$ and $p_r = r - \gamma - \varepsilon$, $\varepsilon > 0$, $\varepsilon \approx 0$

• $r = 1.6, c = 0.8, \gamma = 1 (>0.8), p_h = 0.59, p_r = 0.6$

• As adoption increases, positive and negative externalities compete to change users' utility. When $\gamma \ge c$, the relative utility margin of early adopters (low θ) is lower, and a "cross-over" becomes possible 19

Fixed Price Policy (FON-Like)

- Structurally, a fixed price cannot maximize profit and/or welfare
 - Unable to capture different users' utility
 - Unable to afford subsidies when needed
- But it has the benefit of simplicity
- Two main questions
 - Price effect on ability to maximize welfare
 - Tension between profit and welfare maximization

Fixed Price Policy Properties

$$U(\Theta,\theta) = \gamma(1-\theta) + r\theta x(\Theta) - cm(\Theta) - p$$
$$U([0,1],\theta) = \gamma - c/2 - p + \theta(r - \gamma)$$

• Maximizing welfare calls for a low enough price

$$-p < \min \{\gamma - c/2, \gamma - \gamma^2/(4r - 2c)\}$$

- Positive utility for $\theta = 0$ user at full adoption, and additional condition to avoid "cross-over" as adoption increases
- However, simultaneously maximizing welfare and profit conflicts unless negative impact of roaming traffic, *c*, is small

The "Cost" of Welfare Maximization

- Targeting maximum service adoption can result in a substantial drop in profit
- Controlling the negative impact of roaming traffic is key to mitigating this

Giving Users Pricing Options

- Motivation: Instead of subsidies, users that roam infrequently are offered compensation, but they have to pay when roaming
 - 1. Pay p plus pay p_r when roaming, but get compensated b per unit of roaming traffic your home WiFi carries; or
 - 2. Pay *p* and roam for free

Seeks to combine the best of fixed-price and hybrid policies

- However, giving users the option to choose between policies adds significant complexity to the analysis
 - Adoption regions can become disconnected

Adoption Progression Under a Two-Price Policy

🐺 Washington University in St. Louis

Engineering

Hybrid vs. Fixed vs. Optional Pricing

- **Of note**: Optimizing profit under the hybrid policy still maximizes welfare (though the profit needs not be equal to the maximum possible profit)
- Optional pricing policy offers and intermediate solution between hybrid and fixedprice policies
 - It achieves maximum adoption in most scenarios,
 - It improves profit over the fixed-prince policy, though it still lags behind the hybrid policy

- Unless the value of home connectivity is high relative to the *net* value of roaming connectivity, **the value of UPC grows with its user-base**
- A **usage-based pricing** scheme offers the **most flexibility** in maximizing value and in allocating it between users and provider, but it has a high implementation cost
- A hybrid scheme offers a possible trade-off between efficiency and cost
 - Main deficiency, somewhat surprisingly, arises when impact of roaming traffic is small
 - It can be addressed through the use of "introductory pricing"
- A fixed-price scheme (FON) has the benefit of simplicity, but can quickly limit adoption in favor of higher profits
 - Impact of roaming traffic needs to be tightly controlled
- **Two-price option** can improve on the fixed-price policy at the cost of some additional complexity
- The findings hold under various relaxations of the simplifying assumptions used to facilitate analytical tractability