Assessing the Potential Opportunities of User-Provided Connectivity

Roch Guérin
Washington University in St. Louis

Workshop on Information & Communication Systems and their Application to Vertical Sectors

Montevideo, Uruguay, March 16-18, 2015
Acknowledgments

• This talk is based on joint work with M. H. Afrasiabi (Ph.D. student at Penn) and was funded by NSF grant CNS-0915982

• All errors and/or lack of clarity are, however, my own doing

• More details can be found at

Premises

• The rise of the sharing economy
 • Car sharing, e.g., Uber, Lyft, RelayRides, Zipcar, car2go, etc.
 • Home sharing, e.g., Airbnb, HomeAway, VRBO, Wimdu, 9flats, etc.
 ⇒ Connectivity sharing: FON, AnyFi, airfy, (KeyWifi), Comcast XFINITY WiFi sharing, etc.

• The user as the infrastructure
 • Organic growth
 • Lower costs

But when and how does it work or be made to work?
The FON Model (Over 14 Millions Users)

- FON users trade ability to access other users’ WiFi hotspots for reciprocation (i.e., allowing other FON users to access their own WiFi hotspot)
- Alternative options are also possible, e.g., provide access in exchange for compensation but without reciprocation rights
Framing the Investigation

Key features behind a “user as the network” system

• The network value depends on adoption
 – More users means broader coverage
 – But, with more users, having to share (whether at home or on the road) becomes more likely

• It also depends on how often users need access to and can access shared resources
 – FON’s main benefit is while “roaming”
 – FON is only useful if you can find a FON spot

• Finally, it depends on cost, pricing, and possible “compensation” (for sharing)
Methodology

• Develop and analyze a “stylized” analytical model
 – Simplifying assumptions for analytical tractability
 – Explore solutions’ structure
 – Extract insight and guidelines

• Validation through numerical evaluation and simulations
 – Relaxation of simplifying assumptions
 – Do major outcomes still (qualitatively) hold?
High-Level Model Definition

• Consider a service offered to a (very) large population of heterogeneous users
• Users evaluate the service and adopt (purchase), only if they derive positive value from it
 – Value is measured through a utility function incorporating different parameters that characterize the service and its users
 – As mentioned, a key aspect of a FON-like service is that its value changes with its adoption (because of positive and negative externalities)
Specifying The Model

- Users’ heterogeneity is in their roa**ming** propensity θ, $\theta \in [0,1]$.
 - The main feature of a FON-like service is connectivity while away from home.
- Utility of user with roaming value θ given a set of adopters Θ:

 $$ U(\Theta, \theta) = F(\theta, \kappa(\Theta)) + G(m(\Theta)) - p(\Theta, \theta) $$

 - $F(\cdot, \cdot)$: value of connectivity (at home and while roaming).
 - $\kappa(\Theta)$: service coverage given Θ.
 - $G(\cdot)$: (negative) impact of roaming traffic, and positive impact of possible compensation.
 - $m(\Theta)$: volume of roaming traffic generated by Θ adopters.
 - $p(\Theta, \theta)$: service price for user θ, given Θ.

User θ adopts iff $U(\Theta, \theta) > 0$.
Making Things Tractable
(To Facilitate Analytical Insight)

- Linear value functions and uniform distributions
 - Value is proportional to frequency of connectivity
 - θ is uniformly distributed in $[0,1]$
 - Users are uniformly distributed over service area
 - Service coverage κ equals adoption level x
 - Roaming patterns are uniform over service area
 - Roaming traffic m is evenly distributed across adopters
 - Each user contributes one unit of traffic

- Utility is then of the form
 \[
 U(\Theta, \theta) = (1 - \theta) \gamma + \theta x(\Theta) - cm(\Theta) - p(\Theta, \theta)
 \]
 - γ is value of home connectivity, r is value of roaming
 connectivity, and c is impact of roaming traffic (minus any
 compensation) – We assume $c < r$
Questions of Interest

• When can the service succeed and generate substantial value?
 – Maximum total welfare?
 – When are maximum welfare and maximum adoption congruent?

• What pricing strategies?
 – Pricing controls
 • Users adoption
 • Provider’s ability to extract welfare from users
 • Whether welfare or profit is maximized, or both
 – Complexity of implementation (how much information)
A Two-Prong Investigation

1. Characterizing system welfare
 – How useful is the service and for whom?

2. Exploring pricing strategies and their impact
 – A benchmark: Discriminatory pricing
 – Four practical pricing strategies with different levels of implementation complexity
Where Is The Value in UPC?

Value of user θ: $(1 - \theta)\gamma + \theta rx - cm(\Theta) - e$, $e = \text{cost}$

- Different users see different changes in the value they contribute as adoption varies
 - Low θ users see decreases in utility as x increases
 - High θ users see increases in utility as x increases
Maximizing Welfare

Value of user θ: $(1 - \theta)\gamma + \theta r x - c m(\Theta) - e$, $e = \text{cost}$

- Two main welfare regimes
 1. $\gamma \leq (r - c)$, welfare is maximized at full or zero adoption depending on service cost, e
 2. $\gamma > (r - c)$, intermediate regime can emerge

- **Intuition**: When home connectivity value is
 - low relative to the net value of roaming connectivity, service cost is the main factor
 - high relative to the net value of roaming connectivity, limiting adoption can be preferable when service cost is high
From Welfare to Profit

- Provider seeks control on converting welfare into profit
- Pricing is the tool that realizes this goal
 - Users’ heterogeneity implies pricing heterogeneity
 - Pricing also affects adoption (service value varies)
- Discriminatory pricing as an impractical benchmark
 - Each user’s price set to “value + cost – ε”, $\varepsilon > 0$
 - $p(\Theta, \theta) = [(1 - \theta)\gamma + \theta\rho\xi - cm(\Theta) - e] + e - \varepsilon$
 - Realizes full adoption (all users have positive utility $\varepsilon > 0$)
 - Can arbitrarily adjust transfer of welfare between users and provider
 - Note: Setting $p(\Theta, \theta) = e$, also results in a provider’s profit of 0, but does so very differently (more on this later)
Pricing Strategies

- We investigate four (practical) pricing policies that offer different trade-offs between efficiency and complexity:
 1. **Usage based pricing**, p_h per unit of traffic from home and p_r per unit of traffic while roaming
 2. **Hybrid pricing**, fixed price p_h for home connectivity, and p_r per unit of traffic while roaming
 3. **Fixed price p** for home and roaming connectivity (FON model)
 4. **Pricing options**: Users choose the best of two alternatives
 a. Fixed price p_h for home connectivity and free roaming
 b. Fixed price p_h for home connectivity, p_r per unit of traffic while roaming, and compensation of b per unit of roaming traffic using their home access
Usage-Based Pricing

- Mimics discriminatory pricing (based on roaming profile, Θ)
 - $p(u_h, u_r) = p_h \cdot u_h + p_r \cdot u_r - a$, ($a$ is allowance, and u_h and u_r are home and roaming usages, respectively)
 - $p_\Theta = p_h(1 - \Theta) + p_r,\Theta x(\Theta) - a$
 - $U(\Theta, \Theta) = \gamma(1 - \Theta) + r,\Theta x(\Theta) - cm(\Theta) - p_h(1 - \Theta) - p_r,\Theta x(\Theta) + a$

 Set $p_h = \gamma$ and $p_r = r$, $\Rightarrow U(\Theta, \Theta) = a - cm(\Theta)$, $\forall \Theta$, i.e., for all users

 - Full adoption, *i.e.*, $x([0,1]) = 1$, (hence, maximum welfare) is readily realized by setting $a > cm([0,1])$ ($= c/2$ for uniform roaming traffic)
 \Rightarrow All users have the same positive utility

- Allowance, a, is a “control knob” for arbitrarily shifting welfare from users to provider (from 0 to max value)
Usage-Based Pricing Summary

• A highly effective though complex policy
 – Can simultaneously maximize welfare and profit
 – Can be “tuned” to arbitrarily shift welfare from users to provider

• Note: Maximizing welfare may require subsidies
 – \(p_\theta = \gamma(1 - \theta) + r\theta - a = \gamma - a + \theta(r - \gamma) \)
 • \(p_\theta < 0 \iff \theta < (a - \gamma)/(r - \gamma) \)
 – Sedentary users must be enticed to stay when value of home connectivity, \(\gamma \), is low compared to allowance, \(a \)
Hybrid Pricing

- Fixed-price, p_h, at home, and usage-based roaming pricing, p_r

 \[p(u_r) = p_h + p_r \cdot u_r = p_h + p_r \theta x(\Theta) \]

 \[U(\Theta, \theta) = \gamma(1 - \theta) + r \theta x(\Theta) - cm(\Theta) - p_h - p_r \theta x(\Theta) \]
 \[= (\gamma - cm(\Theta) - p_h) + \theta(r x(\Theta) - \gamma - p_r x(\Theta)) \]
 \[= (\gamma - c/2 - p_h) + \theta(r - \gamma - p_r), \text{ at full adoption, } x = 1 \]

- Full adoption is *unique* equilibrium iff

 \[\theta = 0 \text{ user has positive utility, } i.e., p_h < \gamma - c/2 \]

 \[\theta = 1 \text{ user has positive utility, } i.e., r - c/2 > p_r + p_h \]

 \[\text{And either } \gamma < c, \text{ or when } \gamma \geq c, \text{ a more complex condition that upper-bounds } p_h \text{ based on a decreasing function of } p_r \]

 \[\Rightarrow \text{The latter can prevent recouping all welfare as profit} \]
Welfare = profit \Rightarrow \begin{align*}
 p_h &= \gamma - c/2 - \varepsilon \\
 p_r &= r - \gamma - \varepsilon, \quad \varepsilon > 0, \quad \varepsilon \approx 0
\end{align*}

r = 1.6, \ c = 0.8, \ \gamma = 1 \ (>0.8), \ p_h = 0.59, \ p_r = 0.6

As adoption increases, positive and negative externalities compete to change users’ utility. When \(\gamma \geq c \), the relative utility margin of early adopters (low \(\theta \)) is lower, and a “cross-over” becomes possible.
Fixed Price Policy (FON-Like)

- Structurally, a fixed price cannot maximize profit and/or welfare
 - Unable to capture different users’ utility
 - Unable to afford subsidies when needed
- But it has the benefit of simplicity
- Two main questions
 - Price effect on ability to maximize welfare
 - Tension between profit and welfare maximization
Fixed Price Policy Properties

\[U(\Theta, \theta) = \gamma(1 - \theta) + r\theta x(\Theta) - cm(\Theta) - p \]

\[U([0,1], \theta) = \gamma - c/2 - p + \theta(r - \gamma) \]

- Maximizing welfare calls for a low enough price
 - \(p < \min \{ \gamma - c/2, \gamma - \gamma^2/(4r - 2c) \} \)
 - Positive utility for \(\theta = 0 \) user at full adoption, and additional condition to avoid “cross-over” as adoption increases

- However, simultaneously maximizing welfare and profit conflicts unless negative impact of roaming traffic, \(c \), is small
The “Cost” of Welfare Maximization

- Targeting maximum service adoption can result in a substantial drop in profit
- Controlling the negative impact of roaming traffic is key to mitigating this
Giving Users Pricing Options

• Motivation: Instead of subsidies, users that roam infrequently are offered compensation, but they have to pay when roaming
 1. Pay p plus pay p_r when roaming, but get compensated b per unit of roaming traffic your home WiFi carries; or
 2. Pay p and roam for free

Seeks to combine the best of fixed-price and hybrid policies

• However, giving users the option to choose between policies adds significant complexity to the analysis
 – Adoption regions can become disconnected
Adoption Progression Under a Two-Price Policy

\[r = 1.6, \ c = 0.8, \ \gamma = 0.2 \]
\[p = 0.371, \ p_r = 0.08, \ b = 0.5 \]
Hybrid vs. Fixed vs. Optional Pricing

- **Of note**: Optimizing profit under the hybrid policy still maximizes welfare (though the profit needs not be equal to the maximum possible profit)
- Optional pricing policy offers an intermediate solution between hybrid and fixed-price policies
 - It achieves maximum adoption in most scenarios,
 - It improves profit over the fixed-price policy, though it still lags behind the hybrid policy
Summary

- Unless the value of home connectivity is high relative to the net value of roaming connectivity, **the value of UPC grows with its user-base**
- A **usage-based pricing** scheme offers the **most flexibility** in maximizing value and in allocating it between users and provider, but it has a high implementation cost.
- A **hybrid scheme** offers a possible **trade-off** between efficiency and cost:
 - Main deficiency, somewhat surprisingly, arises when impact of roaming traffic is small
 - It can be addressed through the use of “introductory pricing”
- A **fixed-price scheme** (FON) has the benefit of simplicity, but **can quickly limit adoption in favor of higher profits**:
 - Impact of roaming traffic needs to be tightly controlled
- A **two-price option** can improve on the fixed-price policy at the cost of some additional complexity
- The findings hold under various relaxations of the simplifying assumptions used to facilitate analytical tractability.