Overcoming the Challenges of Network Technology Adoption

Roch Guérin Dept. Comp. Sci. & Eng. Washington University in St. Louis

Acknowledgments

- This talk is based on joint work with Steven Weber and Jaudelice C. de Oliveira from Drexel University
- However, all errors and/or lack of clarity are my own doing
- More details can be found at

[1] R. Guérin, J. C. de Oliveira, and S. Weber, "Adoption of bundled services with network externalities and correlated affinities." To appear in ACM Transactions on Internet Technologies. Early version available on <u>ArXiv</u>, October 2013.

[2] S. Weber and R. Guérin, "*Facilitating adoption of network services with externalities via cost subsidization*." W-PIN+NetEcon Workshop, Austin TX, June 2014. Extended version available on <u>ArXiv</u>

The Adoption Conundrum of Network Technologies

- Useful above a certain adoption threshold, but how to get there?
 - See, *e.g.*, A. Ozment and S. E. Schechter, "Bootstrapping the adoption of Internet security protocols." Proc. WEIS 2006, Cambridge, UK, for a relevant discussion

The Adoption Conundrum of Network Technologies

• And there are plenty of examples to illustrate the adoption challenges of network technologies & services

3

Jan 2007

Jan 2008

Jan 2009

global

- IPv6 standardized circa 1998
- IANA allocates last block in February 2011
- World IPv6 Day in June 2011
- World IPv6 Launch in June 2012
- Still, it took IPv6 15 years to go from 0 to barely 40,000 websites (out of 1M)...

• DNSSEC standard first published in 1999, but updated in 2005, and again in 2008

Jan 2011

Jan 2012

Jan 2013

Jan 2014

Jan 2015

From https://eggert.org/meter/dnssec (sample of ~7300 sites)

• Sweden deploys DNSSEC in 2005

Jan 2010

- IANA signs the root zone of the DNS in 2010
- Still barely a few % of sites in 2014...

Framing the Problem

- How do we overcome the "chicken-and-egg" adoption dilemma faced by most network technologies and services?
- As alluded to, it is a serious problem that has affected or delayed the success of many network technologies
 - See IAB Workshop on Internet Technology Adoption and Transition (ITAT), Cambridge, UK, December 2013
- Several mechanisms have been proposed to overcome initial adoption hurdles. We focus on two of them
 - *Bundling*: I like A but don't care too much for B, but will still adopt A+B and in the process help improve B's eventual adoption (demand correlation is key)
 - *Incentives*: I know that right now there is little value in this new technology, but I'll pay you to adopt it
- Great ideas, but when and how well do they work?

Engineering

BUNDLING (OR CAN WE MAKE A WINNER OUT OF TWO LOSERS?)

Engineering

Bundling For Adoption

- Two relevant bodies of work
 - Product and technology diffusion
 - Product and service bundling
- Much work in marketing research on diffusion of products with externalities
 - Clear focus on adoption (dynamics and at equilibrium), but
 - Little or no work accounting for the impact of bundling
- Investigation of bundling strategies
 - Focus on optimal pricing strategies (to maximize revenue, not adoption)
 - Accounts for demand correlation (highlights the benefit of negative correlation)
 - Until recently, externalities were absent from these models
 - Three recent works have explored bundling with externalities
 - All three focus on optimal pricing and assume independent demands, *i.e.*, no correlation in the values users assign to different products

Engineering

Setting Things Up (as simply as possible)

• Modeling individual adoption decisions based on *utility functions*

 $V_i(x_i(t)) = U_i + e_i x_i(t) - c_i$, where

- U_i is the user's (random) valuation for technology *i* (follows a certain distribution)
- e_i is the strength of technology *i*'s externality factor (how value increases with adoption)
- $x_i(t)$ is the level of adoption of technology *i* at time *t* (varies from 0 to 1)
- c_i is the adoption "cost" of technology *i* (resources, training, upgrades, acquisition, etc.)
- Adoption $\Leftrightarrow V_i(x_i(t)) > 0$, with equilibria such that $h_i(x_i^*) = x_i^*$, where $h_i(x) = P(U_i > c_i e_i x_i)$
 - Rational users want to see positive utility from adopting
 - Equilibria when # adopters exactly matches # users with positive utility
- When bundling two technologies (1 and 2), the bundle's utility V(x(t)) is of the form V(x(t)) = U + ex(t) - c

- Where[†] $U = U_1 + U_2$, $e = e_1 + e_2$, $c = c_1 + c_2$, and x(t) is the bundle's adoption level at time t

The question is "When is $x^* \ge \max\{x_1^*, x_2^*\}$?," *i.e.*, can we get Win-Win outcomes? And what role does the *joint distribution* $F(U_1, U_2)$; in particular correlation, play?

Capturing the Effect of Correlation

- Accounting for correlation involves two main parameters
 - 1. Individual (marginal) distributions of users' technology valuation
 - 2. Specification of the joint distribution of technology valuations
 - Copulas offer a standard approach to realize a parametrized joint distribution with known marginals, though often with limitations on the range of feasible correlation coefficients
- A general solution is possible but analytically challenging (and opaque, *i.e.*, does not yield any real insight), even for simple marginals, *e.g.*, uniform distribution
- We can, however, explicitly solve for special cases
 - Uniform distributions and perfect negative/positive correlation
 - Helps identify instances of Win-Win (WW) and Lose-Lose (LL) outcomes
 - Discrete distribution
 - Allows for the systematic investigation of the impact of correlation (ρ)

Two Extreme Scenarios

- Users' valuation *U* for both technology 1 and 2 is uniformly distributed in [0,1]
 - Opposite correlation scenarios ($\rho = +1$ and -1)
 - $\rho = +1$: All user likes both technologies equally
 - $\rho = -1$: A user that assigns value u_i to technology *i*, assigns value $1 u_i$ to the other
- Bundled offering: $V(x(t)) = (U_1 + U_2) + (e_1 + e_2)x(t) (c_1 + c_2)$
 - $\rho = +1$: Bundle adoption is as for individual technologies but with "rescaling"
 - U + (e/2)x(t) (c/2) > 0, where U has the same uniform distribution as U_1 and U_2
 - $\rho = -1$: Bundle adoption depends solely on cost and average bundle value M
 - V(x(t)) = M + ex(t) c, so that everyone (no one) adopts at t = 0 iff c < M ($c \ge M$)

Clearly correlation in technology valuation plays a role

Focusing on the Case $\rho = 1$

				0	$\frac{2-c}{2-e}$	1
				c > 2	e < c < 2	$c < e \wedge 2$
	(0,0)	$c_1 > 1$	$c_2>1$	SS	WW	WW
				True	False	False
WW outcomes:	$\left(0, \frac{1-c_2}{1-c_2}\right)$	$c_1 > 1$	$e_2 < c_2 < 1$	SL	WL or WW	WW
 Combinations 	(0,1)	$c_1 > 1$	$c_2 < e_2 \wedge 1$	SL	WL	WS
of low-cost, low externality and high-cost, high externality technologies • No LL outcomes (in this particular configuration)	$\left(\frac{1-c_1}{1-c_1},0\right)$	$e_1 < c_1 < 1$	$c_2 > 1$	LS	LW or WW	WW
	(1,0)	$c_1 < e_1 \wedge 1$	$c_2 > 1$	LS	LW	SW
	$\left(\frac{1-c_1}{1-e_1},\frac{1-c_2}{1-e_2}\right)$	$e_1 < c_1 < 1$	$e_2 < c_2 < 1$	LL	WL or LW	WW
	、			False		False
	$\left(\frac{1-c_1}{1-c_1},1\right)$	$e_1 < c_1 < 1$	$c_2 < e_2 \wedge 1$	LL	WL	WS
				False		
	$\left(1, \frac{1-c_2}{1-c_2}\right)$	$c_1 < e_1 \wedge 1$	$e_2 < c_2 < 1$	LL	LW	SW
				False		
	(1,1)	$c_1 < e_1 \wedge 1$	$c_2 < e_2 \wedge 1$	LL	LL	SS
				False	False	True

Exploring Things Further A Basic Discrete Scenario

- Technology valuations take only two possible discrete values
 - Like $(U_i = 1)$ and Don't Like $(U_i = 0)$
 - Users are equally likely to like or not like a technology $(P[U_i=1]=P[U_i=0]=1/2)$, with their joint distribution parametrized by $p \in [0,1]$

$U_1 \setminus U_2$	0	1	
0	(1-p)/2	<i>p</i> /2	1/2
1	<i>p</i> /2	(1-p)/2	1/2
	1/2	1/2	

- Correlation coefficient $\rho = 1 - 2p$ goes from -1 to +1 as p varies in [0,1]

• Main benefit is that both separate and bundle equilibria can now be characterized as a function of ρ

St.Louis Washington University in St.Louis

Engineering

Equilibria Under Discrete Valuations

- Separate equilibria $l_i = (c_i - 1)/e_i$ and $r_i = c_i/e_i$
- Three possible equilibria 0, 1/2, and 1

- Bundle equilibria l = (c - 2)/e, m = (c - 1)/e,and r = c/e
- 3 possible equilibria: 0, $(1 + \rho)/4$, $(3 - \rho)/4$, and 1

A Pictorial View of When (and Why) Bundling Can Help?

Engineering

Both WW and LL Outcomes

		BundleEq	0	$\frac{1+\rho}{4}$	$\frac{3-\rho}{4}$	1	
	BundleE	Eq conditions \Rightarrow	c > 2	c < 2	c < 2	c < 2	
				$(1+\rho)e < 4(c-1)$	$(1+\rho)e > 4(c-1)$	$(1+\rho)e > 4(c-1)$	
SepEq	SepEq conditions \Downarrow				$(3-\rho)e < 4c$	$(3-\rho)e > 4c$	
(0,0)	$c_1 > 1$	$c_2 > 1$	SS	WW	WW	WW	
			True	False	False	False	
(0, 1/2)	$c_1 > 1$	$c_2 < 1$	SL	WL	WW	WW	
		$e_2 < 2c_2$					1
(0, 1)	$c_1 > 1$	$c_2 < 1$	SL	WL	WL	WS	
		$e_2 > 2c_2$					
(1/2, 0)	$c_1 < 1$	$c_2 > 1$	LS	LW	WW	WW	
	$e_1 < 2c_1$						
(1, 0)	$c_1 < 1$	$c_2 > 1$	LS	LW	LW	SW	
	$e_1 > 2c_1$						🤈
(1/2, 1/2)	$c_1 < 1$	$c_2 < 1$		LL	WW	WW	— 2
	$e_1 < 2c_1$	$e_2 < 2c_2$	False				
(1/2, 1)	$c_1 < 1$	$c_2 < 1$		LL	WL	WS	
	$e_1 < 2c_1$	$e_2 > 2c_2$	False				
(1, 1/2)	$c_1 < 1$	$c_2 < 1$		LL	LW	SW	
	$e_1 > 2c_1$	$e_2 < 2c_1$	False				
(1, 1)	$c_1 < 1$	$c_2 < 1$		LL		SS	
	$e_1 > 2c_1$	$e_2 > 2c_1$	False	`	False		

• WW outcomes:

- 1. As before: Cheap, low externality + Expensive, high externality
- 2. But also combining two "middling" technologies
- LL outcomes:
 - Typically for highly negative correlation, *i.e.*, $\rho \approx -1$

15

Engineering

For WW outcomes: Choose technologies that are

(a) either heterogeneous in cost-benefit structure
 (b) or average (in cost & externality)

Ve know

2. Sufficiently correlated in user valuations, but not too much!

Engineering

Illustrating the Impact of ρ (Case 2)

LL outcomes can arise when valuation correlation is negative enough

- Negative correlation means that few users like both services
- Can prevent early adoption phase to reach critical mass, *i.e.*, past the adoption level for which externality can start fueling continued adoption growth

Engineering

Limited Robustness Test Back to the Uniform Distribution – (1

- WW outcomes qualitatively similar in behavior
 - Correlation must exceed a threshold
 - Exceeding that threshold can be harmful

Limited Robustness Test Back to the Uniform Distribution – (2)

- LL outcomes also yield qualitatively similar behaviors
 - Arise mostly for negative correlation

Engineering

SUBSIDIES (PAYING TODAY FOR TOMORROW'S WINNERS)

Offering Incentives to Early Adopters

- When using subsidies, two key questions are
 - 1. How big should the subsidy be?
 - 2. How long should subsidies be offered?
- And the goals are typically to
 - 1. Improve/maximize final adoption (after subsidies stop)
 - 2. Minimize total cost of subsidies
 - 3. And to a lesser extent, minimize total duration of subsidies
- Addressing those issues calls for not only understanding adoption decisions, but also their dynamics

A Basic Model

- As for bundling, adoption decisions are based on a user's utility function: V(x(t)) = U + ex(t) c + s(t,x(t)), where as before
 - U is the user's (random) valuation for the technology
 - -e is the strength of the technology externality
 - -x(t) is the level of adoption of the technology at time t
 - -c is the adoption "cost" of the technology
 - s(t,x(t)) is the subsidy level at time t (it can depend on x(t))
- Adoption dynamics are captured through a standard diffusion model $\dot{x}(t) = \gamma \left(P[V(x(t)] - x(t)), \gamma > 0, i.e., \text{ the rate of change in adoption is} \right)$ proportional to the difference between the fraction of users who *would adopt* given an adoption level of x(t), and those who *have* adopted
- For simplicity we focus on the simplest type of subsidies, *i.e.*, equal to a constant value s for a given period of time $[t_0, T]$ and 0 otherwise

Understanding Adoption Equilibria and Dynamics

- Equilibria verify $\dot{x}(t) = 0$ (or x(t) = 0 with $\dot{x}(t)|_{x=0} \le 0$, and x(t) = 1 with $\dot{x}(t)|_{x=1} \ge 0$)
- Since subsidies eventually stop, the system will ultimately settle to one of the feasible equilibria under no subsidy
 - So characterizing possible adoption equilibria in the absence of subsidies is a useful first step
 - For simplicity, we focus on the case where user valuations are uniformly distributed in $[u_m, u_M]$

Engineering

Adoption Equilibria & Dynamics Without Subsidies

• Equilibria and adoption dynamics can be shown to belong to four possible configurations based on the relationship between u_m , u_M , c, and e, with one possible internal equilibrium of the form

$$x^{o}(c) = (u_{M} - c)/(u_{M} - (u_{m} - c))$$

• The most interesting regime is when

 $u_M < c < u_m + e$

In this scenario, $x^{o}(c)$ is and unstable equilibrium that demarcates the stability region of the two stable equilibria 0 and 1

Engineering

Adoption Equilibria & Dynamics With Subsidies

- Consider first a special case
 - Full subsidy: s = cfor a period of duration T^{o}_{FS} , *i.e.*, until adoption exceeds $x^{o}(c)$ starting from x(0)=0

Different outcomes as a function of subsidy duration

Subsidy Duration and Cost

- General case with subsidy of s until an adoption level of x^o(c) is reached, starting again from x(0)=0
- Both minimum subsidy duration *T*(*s*) and resulting subsidy *S*(*s*) cost can be characterized as a function of *s*
- Of interest is the fact that subsidy cost has a minimum value

Trade-Off Between Subsidy Duration and Cost

- Some immediate conclusions
 - When subsidies are too high, the cost increases without decreasing duration
 - When subsidies are low,
 both cost and duration
 increase
 - There is a range of intermediate subsidies for which subsidy cost and duration are in efficient tension with each other

Engineering

Engineering

A Closer Look at the Cost vs. Duration Trade-Off of Subsidies

- The adoption of new technologies with large externalities can be challenging
- Bundling and subsidies are two possible approaches to dealing with this challenge
- Bundling can be effective, but depends on the correlation in how users value the bundled technologies
 - Positive correlation attracts early adopters to reach critical mass
 - But too much positive correlation means many users who don't value either technology
- Subsidies can overcome initial adoption hurdle, but identifying the right subsidy level can be challenging
 - Subsidies that are either too low or too high can result in significant over-costs and/or long subsidy durations
 - There is an intermediate range of subsidies that realizes a reasonable trade-off