

Some Basic Questions

- When does channel diversity yield meaningful benefits?
 - What channel characteristics?
 - What channel combinations?
- What is the "best" way to use the available channels?
 - What transmission policies?
 - What channel grouping strategies?
- What types of benefits does channel diversity afford?
 - Higher throughput,
 - Robustness to channel variations
- How sensitive are those benefits?
 - To errors in estimating channel characteristics?
 - To deviations from the optimal policy?

R. Guerin - University of Pennsylvania

5

Trading-Off Performance for Robustness

System	<i>D_{ER}</i> compared to a no diversity system	Percent increase in <i>both</i> LTER and EBL so that P_{min} is not satisfied			
No diversity $(N = 19)$	0%	2%			
Diversity $(N = 15)$	27.6%	16%			
Diversity $(N = 16)$	20.7%	37%			
Diversity $(N = 17)$	14.2%	63%			
Diversity $(N = 18)$	8.2%	92%			
Diversity $(N = 19)$	2.7%	> 100%			

- We use one of the scenarios of the previous slide - *EBL* and *LTER* are made progressively worse on all three channels
- We vary the code length N that the diversity system uses
 A larger N makes the system more robust to errors, but lessens the potential performance improvement under "normal" conditions
- We assess the trade-off between the two

R. Guerin - University of Pennsylvania

Variance Multinlier	No Diversity N = 19		Channel Diversity					
			N = 15		N = 16		N = 19	
	ER	P _{succ}	ER	P _{succ}	ER	P _{succ}	ER	P _{succ}
Original	1.534	0.971	1.956	0.978	1.850	0.987	1.574	0.997
x 0.25	1.555	0.985	1.947	0.973	1.840	0.982	1.574	0.997
x 0.5	1.547	0.980	1.942	0.971	1.837	0.980	1.568	0.993
x 1	1.538	0.974	0	0.968	1.83	0.976	1.562	0.989
x 2	0	0.963	0	0.962	0	0.968	1.552	0.986
x 4	0	0.961	0	0.949	0	0.957	1.538	0.974
x 8	0	0.953	0	0.941	0	0.949	0	0.966

Impact of Changes in Channel Statistics

• We use three users and three GSM channels with $P_{\min} = 0.97$

- The variance of the error burst periods is varied from 0.25 to 8 times that of the GSM channel using a Gamma distribution (non-Markovian)

Again diversity allows trading-off performance for robustness
 R. Guerin - University of Pennsylvania

31

Some Ongoing/Future Work

- Investigate impact of channel "stickiness"
 - Make transmission decisions for a block of b packets
 - Reduces the channel switching overhead
 - But, also reduces the ability to avoid bursts
- Impact of packet size
 - Bigger packets incur less overhead
 - But, same problem as with channel stickiness
- Exploring more general channel models
 - Hybrid time/frequency channel definition
 - More complex channel statistics, e.g., an 8-state Markov Chain
 - Correlated channels
 - How does the optimal policy change?
 - How quickly do performance improvements vanish?
 - Accounting for possible collisions when sharing is not coordinated
 - Access point association scenario
 - · Users register with multiple access points (to implement transmission diversity)
 - More users per access point \Rightarrow greater potential for collision, but
 - More access points per user \Rightarrow lesser load per user on a given access point
- Experimental validation (802.11 testbed)
 - Channel modeling (from bits to packets)
 - Evaluation of path switching overhead

R. Guerin - University of Pennsylvania

33