Monitoring IPv6 Content Accessibility and Reachability

Contact: R. Guerin (guerin@ee.upenn.edu)
University of Pennsylvania

Outline

- Goals and scope
- Software overview
 - Functionality, performance, and requirements
- Initial findings
 - Preliminary measurement results
 - Some interpretations
- Next steps
 - Wider scale deployments and data accessibility

Acknowledgments

- This is a joint project between Comcast and the University of Pennsylvania, and supported in part by Comcast
- Software currently deployed at Penn and Comcast (see "<u>References</u>" slide for links to the monitors web front-end and other relevant URLs)

Background

- By most accounts we are going to run out of IPv4 addresses soon (from http://www.potaroo.net/tools/ipv4 and many others)
 - Projected IANA Unallocated Address Pool Exhaustion: Sep-2011
 - Projected RIR Unallocated Address Pool Exhaustion: Jul-2012
- ⇒ Although we have had IPv6 for 15 years and have not really bothered migrating to it or using it, this is about to change
- This raises two basic questions
 - 1. What can I access with (only) an IPv6 address?
 - 2. How different is it accessing it over IPv6 or IPv4?
- Answer to 1. <u>determines</u> how much "translation" will be needed
- Answer to 2. <u>influences</u> how much "translation" will be needed (see paper on this issue in the "<u>References</u>" slide at the end of this presentation)

Motivations

 In spite of a number of efforts (see again "<u>References</u>" slide for a list or related efforts), we don't have much/enough information when it comes to the two previous questions

 Obtaining visibility (i.e., data) into answers to those questions is the primary goal of this project

Basic Approach

- To answer the questions
 - 1. What can I access with (only) an IPv6 address?
 - 2. How different is it accessing it over IPv6 or IPv4?
- We need a methodology to
 - Identify what in the Internet is IPv6 accessible
 - Compare the performance of IPv6 access to that of IPv4
- A three-prong approach
 - 1. Probing the Internet for IPv6 "accessibility"
 - Systematically evaluating this accessibility, i.e., "reachability"
 - 3. Identifying reasons for differences between IPv6 and IPv4 access
- Monitoring system (this talk) focuses on providing information about 1.
 and 2.
- Data from monitoring system is a key input to the investigation of 3. (some preliminary tidbits)

Monitoring System

- A software client that runs in hosts and probes "the Internet" for IPv6
 <u>accessibility</u> and <u>reachability</u>
 - Accessibility: Site has a registered IPv6 (and IPv4) address
 - Reachability: An http query to the site's IPv6 address succeeds and returns the "same" content as a query to the site's IPv4 address

Caveat: Focus is on web access as opposed to other services

- A mysql backend database that stores the information retrieved by the monitoring client
 - A schema that keeps time-series of retrieved information and supports various structured queries
- A web front-end that displays some of the data obtained by the monitoring client
 - Continuously updated plots that reflect new data as it becomes available

Monitoring System Functional Overview

- Assessing IPv6 accessibility (DNS queries)
 - Input: List of sites top 1M from Alexa + others (standard API to import list of sites)
 - Process: DNS queries for A and AAAA records
 - Output: mysql database records IPv4 and IPv6 sites accessibility (status, addresses, etc.)
- Assessing IPv6 reachability (web queries)
 - Input: Sites that are IPv4 and IPv6 accessible
 - Process(1):
 - Query sites for content (http get of main page), and compare content (based on page size)
 - Query sites with "identical" IPv4 and IPv6 content multiple times to compare download performance
 - Output: Store results in mysql database
 - Process(2): traceroute (optional) to all pairs of site addresses with identical content
 - Note: Many fail or are incomplete Alternative uses local LookingGlass server to obtain AS-level path
 - Output: Store traceroute results in mysql database
- Displaying IPv6 reachability
 - Percentage of sites that are IPv6 reachable
 - Top 1M (Alexa), all monitored sites, split by ranking categories, etc.
 - IPv6 vs. IPv4 "performance" measures
 - Scatterplots of IPv4 vs. IPv6 download times and speeds, ranking based comparisons
 - Raw data in table format for most of the plots

Monitoring System Requirements and Characteristics

- Current system configuration (probably bare minimum)
 - Intel Core2 2.66GHz with 2GB RAM and 160GB HD (ATA 7200 rpm)
 - OS: Linux (Ubuntu 9.04 or OpenSuse 11.2)
- Required software packages (monitoring client is written in java)
 - JDK 6.0 or higher
 - mysql 5.1 or higher
 - Python 3
 - Tomcat server 5.5
- Network connectivity
 - 1GB/s E/N
 - Native IPv4 and IPv6 connectivity
- Operational characteristics
 - Monitoring IPv6 accessibility of ~3.5M sites and IPv6 reachability of ~5,000 sites takes approximately 1.5 days (software architecture allows distribution across multiple machines)
 - Storage requirements
 - Accessibility: ~275 bytes/site (135 bytes of data and 140 bytes of indices), i.e., storage requirements for 3.5M sites is ~1 GB
 - Reachability: ~60 bytes/site (50 bytes of data and 10 bytes of indices),), *i.e.*, storage requirements for 5k sites is ~300 kB/monitoring round
 - traceroute: 476 bytes/site (460 bytes of data and 16 bytes of indices),), i.e., storage requirements for 5k sites is ~ 2.4 MB/monitoring round

Initial Deployment - Penn

Initial Data – IPv6 Penetration

- Still a long way to go, i.e., < 0.2% penetration!
 - Note: The vast majority of sites offer the same content over IPv6 and IPv4 (less than 7% have different content)
- Side Note: Recent drop apparently caused by one hosting site (in AS 28677) that stopped registering IPv6 addresses

IPv6 Reachability—Comparing Perspectives

- Penn vs. Comcast monitors: IPv6 reachability for top 1M sites
 - Obvious differences!
 - In the process of exploring where they come from

Initial Data – IPv6 Penetration by Rank

More popular sites more likely to be IPv6 reachable

Initial Data – Performance

See RawData

 Room for improvement, i.e., IPv6 yields better performance in only about 25% of the cases

Above (below) y=x line IPv6 is worse (better)

Percentage of sites for which IPv6 is better

A Closer Look at Performance Differences (June 2010 Data)

- The more popular websites seem to fare slightly better than average except for the very top ones
- When IPv6 is better it is usually marginally better, while IPv4 can be significantly better

	Top 1M	Top 100k	Top 10k	Top 1k	Top 100	All Websites
IPv4 Better	951 (79.11%)	148 (64.06%)	26 (53.06%)	8 (61.53%)	3 (100%)	3516 (77.96%)
IPv6 Better	251 (20.88%)	83 (35.93%)	23 (46.93%)	5 (38.46%)	0 (0.00%)	994 (22.03%)
IPv4 Better	Top 1M	Top 100k	Top 10k	Top 1k	Top 100	All Websites
> 100%	143 (11.89%)	14 (6.06%)	1 (2.04%)	2 (15.38%)	2 (66.67%)	598 (13.25%)
50% to 100%	192 (15.97%)	7 (3.03%)	2 (4.08%)	1 (7.69%)	0 (0.00%)	629 (13.94%)
25% to 50%	141 (11.73%)	28 (12.12%)	3 (6.12%)	2 (15.38%)	0 (0.00%)	512 (11.35%)
0% to 25%	475 (39.51%)	99 (42.85%)	20 (40.81%)	3 (23.07%)	1 (33.33%)	1777 (39.40%)
IPv6 Better	Top 1M	Top 100k	Top 10k	Top 1k	Top 100	All Websites
> 100%	5 (0.41%)	2 (0.86%)	1 (2.04%)	0 (0.00%)	0 (0.00%)	21 (0.46%)
50% to 100%	7 (0.58%)	3 (1.29%)	2 (4.08%)	0 (0.00%)	0 (0.00%)	27 (0.59%)
25% to 50%	16 (1.33%)	9 (3.89%)	5 (10.20%)	0 (0.00%)	0 (0.00%)	71 (1.57%)
0% to 25%	223 (18.55%)	69 (29.87%)	15 (30.61%)	5 (38.46%)	0 (0.00%)	875 (19.00%)

Initial Data Interpretation Where Do Differences Come From?

Possible causes

- Network data paths (tunnels, IPv6 forwarding, etc.)
- Network control plane (routing, peering agreements, etc.)
- Others
 - CDN type mechanisms (most don't offer an IPv6 service)
 - End-systems

Preliminary classification

- Same destination (AS) and ~ same (AS) path: Likely data plane issue
- Same destination (AS) and \neq (AS) path: Likely control plane issue
- Different destinations (ASes): Possible CDN (or maybe just configuration)

Initial Analysis (End 2009 Data) Where Do Differences Come From?

- Differences between IPv6 and IPv4 paths seem to be the dominant reason (58% overall) for better IPv4 performance
- As expected, CDNs have a bigger impact among more popular web sites (23% of top 1k sites)
- Possible recommendations/conclusions)
 - Improve IPv6 peering (should affect overall performance)
 - Lobby for IPv6 support by CDNs to promote IPv6 adoption by more popular sites

	Same Destination ~ Same Path	Same Destination Different Paths	Different Destinations	Don't Know	Total
ALL Websites	207 (6.7%)	1799 (58%)	188 (6.1%)	898 (29%)	3092
Top 1 M	68 (7.8%)	565 (65%)	43 (5%)	194 (22.3%)	870
Top 100 k	24 (15.5%)	77 (49.7%)	4 (2.6%)	50 (32.3%)	155
Top 10 k	5 (10.6%)	19 (40.4%)	5 (10.6%)	18 (38.3%)	47
Top 1 k	0 (0%)	4 (30.8%)	3 (23.1%)	6 (46.2%)	13
Top 100	0 (0%)	1 (100%)	0 (0%)	0 (0%)	1
IPv4 Better	128 (61.8%)	1325 (73.7%)	127 (67.6%)	530 (59%)	2110 (68.2%)
IPv6 Better	79 (38.2%)	474 (26.3%)	61 (32.4%)	368 (41%)	982 (31.8%)

Next Steps

- **Deployment**: Monitoring clients at additional locations
 - Software package available for distribution
 - Two versions: With and without traceroute component
 - OpenBSD copyright license (source code), BUT with the commitment to share data
 - Monitoring client includes built-in upload facility to common repository
 - Initially targeting 15-20 sites to provide global/diverse vantage points

Send email to guerin@ee.upenn.edu if interested and specify version (with or without traceroute - Preference to sites willing to do traceroute)

- Development: Open global repository of monitoring data (Hint: Need additional resources!)
 - Current version only setup for data uploads to ensure persistence of all monitoring information, with some data made available through web front-end
 - Final version to offer open access of full data (direct mysql access) to participants
- Analysis: Temporal and spatial analysis of data
 - Evolution over time for different categories of sites
 - Correlation of data and perspectives across monitoring sites

References and Relevant Links

- This project
 - Paper on "Fostering IPv6 Migration Through Network Quality Differentials"
 - Penn and Comcast IPv6 monitors
- Other IPv6 resources (an obviously incomplete list)
 - OECD report on "Internet Addressing: Measuring Deployment of IPv6"
 - RIPE IPv6 measurements compilation
 - Geoff Huston <u>article</u> and <u>stats</u> on end-systems IPv6 abilities and preferences
 - Mark Prior IPv6 status survey
 - Mike Leber Global IPv6 deployment progress Report
 - IPv6 Act Now
 - SixXS IPv6 prefix visibility
 - amsix traffic statistics
 - Hurricane Electric IPv6 service