Packet-Level Diversity From Theory to Practice: An 802.11based Experimental Investigation

E. Vergetis, E. Pierce, M. Blanco and R. Guérin

University of Pennsylvania
Department of Electrical & Systems Engineering

Mobicom 2006 September 23–26, Los Angeles, CA, USA

Our Starting Point: Diversity

- Diversity: more than one choice in terms of available path/channel
 - A long history of results pointing to its benefits as a means to improve performance
- Some recent developments hinting that simple (blind) deterministic round-robin policies "should" work well most of the times
- Wireless environment is one where trying to take advantage of diversity appears most natural

Our Focus

- Diversity: Lots of ways to leverage it
 - Open-loop (blind) system
 - no channel feedback (only general statistics are known, if at all)
 - Pre-determined transmission policy (what packet in a message is sent on what channel)
- Performance: Lots of ways to measure it
 - Metric of interest is message rate with an eye to real-time applications that require some minimum level of message delivery guarantees
 - No retransmissions
 - Forward error code as another design knob
 - Packet level (*N*,*k*) code recovers from loss patterns of up to *N*-*k* packets

Outline

- A short primer on open-loop diversity
 - How it works and what it assumes
- Our goals and the experimental setup we used
 - Testing the gap between theory & practice
 - Implementation issues
 - Channel "model"
 - Questions and investigation approach
 - When and/or how much does diversity help/hurt?
- Findings
- Potential Extensions

Open-Loop Diversity – The Theory

- User can choose from C channels with "known" statistics
 - Long-term error rate (LTER), expected burst length (EBL)
 - User transmissions do not affect channel statistics
- User distributes packet transmissions across all *C* channels according to some policy
 - Deterministic and probabilistic policies
- User wants to maximize performance
 - Highest possible message (consisting of k packets) delivery rate that meets a certain reliability target P_{\min}
- Design knobs
 - Transmission policy
 - What set of channels to use and how?
 - Code selection
 - What (N,k) code to choose (smallest N that achieves P_{\min})?

Open-Loop Diversity – The Results

- Under certain assumptions
 - Channel independence
 - Stationary, Markovian (Gilbert-Elliot) channels
 - No overhead in switching transmissions from one channel to another
- In scenarios where diversity "helps," a simple, round-robin policy is close to optimal, and "usually" wont hurt
 - Higher effective message rate (ER) and relative insensitivity to errors in channel statistics

Open-Loop Diversity – The Intuition

- Channel diversity is useful because/when
 - It allows breaking-up error bursts
 - It avoids being "stuck" with a bad channel
- Deterministic, round-robin policy works well because
 - It spaces out successive use of a given channel (minimizes the odds of coming back early to an ongoing error burst)
- Distributing packet transmissions across multiple channels yields
 - The ability to use a smaller code length N to satisfy Pmin
 - And/or a higher probability of successful message delivery
 - Most of the gains from diversity are through reducing N

Open-Loop Diversity – The Questions

- How well do the assumptions hold in practice?
 - Independent, stationary channels, with known statistics
 - No impact of user transmissions on channel statistics
 - No channel switching overhead
- What can actually be realized?
 - 802.11b environment
 - Standard end-systems (PCs) without precise control of transmission timings

Experimental Setup

- Two 802.11b Access Points (APs)
 - Intel StarEast board, with one miniPCI NIC each
 - External omni-directional antennas
 - Assigned "non-overlapping" frequency bands
 - Located ~1m from each other
 - Logging of all incoming packets without performance degradation
 - Within reach of other APs interfering in all 11 frequency bands

Sender

- Standard laptop with two NICs
 - One external PCMCIA NIC, and one internal miniPCI NIC
 - Linux operating system
 - Transmission speed set at 2Mbps
- Located between 2m and 10m away from the two APs
 - Maintains association with both APs
 - Line-of-sight (LoS) as well as non-LoS (indoor wall) transmissions

Some Other Implementation/Operation Aspects to Consider

- Impact of 802.11 operation
 - RTS/CTS handshake before transmissions[**Disabled -** Large RTSThreshold value]
 - "Feedback" mechanism: ACK packets[Disabled Broadcast packets]
 - Channel access control (contention period)
 - Sensing and exponential backoff
 - Inter-frame spaces (SIFS, DIFS, etc.)
- Processor and OS overhead vs. transmission speed of the NICs
 - Where is the bottleneck and how does it affect transmission timings?

Transmission Timing Scenarios

Experimental Approach

- Generate extensive sets of traces
 - "Continuous" transmissions on both NICs
 - 1,000 bytes packets
 - Traces of received packets recorded at each AP
 - Vary
 - Sender location
 - Time-of-day
 - Selection of (non-overlapping) frequency bands
 - Additional configuration to "test" for channel correlation
 - Interferer transmitting in "intermediate" band
- Post-processing of traces to test performance under different configurations/policies
 - Vary coding overhead (N), message size (k), target performance (P_{\min})
 - Explore impact of channel combination, inter-leaving, transmission policies (sticky policies to overcome switching overhead)

But First, What Does an 802.11 Channel Look Like?

- Answer: It's all over the place...
- There is no "average" 802.11 channel
 - Stationary G-E model not particularly accurate
 - Significant time-of-day and location dependent variations
- Across 10 minute intervals, channel characteristics fluctuate widely
 - LTER can range from 0.01% to 70%
 - EBL varies between 1 and 40 packets
 - Actual error bursts were between 1 and several hundred packets
- Similar observations made by others
- Question: What remains of the theoretical "findings" on the benefits of diversity?

Exploring What Remains of the Benefits of Diversity

- A three-prong approach
- 1. Known channel characteristics are available to identify (and use) "optimal" diversity code
 - Assesses impact of 802.11 channel fluctuations and effect of endsystem behavior
- 2. Unknown channel characteristics Short-term
 - Explore benefits, if any, of diversity for different levels of coding overhead over short (10mins) "adaptation" periods
- 3. Unknown channel characteristics Long-term
 - Evaluate advantages of systematic use of diversity versus singlechannel transmissions
- Consider various configurations
 - Channel combinations, sticky policies, etc.

Benefits With Known Channels Two "Average" Channels

- Channel characteristics:
 - $LTER_1 \sim 11\%$, $EBL_1 \sim 11$ pkts
 - $LTER_2 \sim 10\%$, $EBL_2 \sim 5$ pkts
- Benefits can be substantial *IF*
 - Performance target P_{\min} is a constraint
- Interleaving does not seem to help much
 - Conjecture: Operation of the 802.11 protocol itself already creates small "gaps" between packets

Effective Rate (ER) is relative to maximum transmission rate

Things Look Even Better When One Channel Is Bad

Channels:

- $-LTER_1 \sim 11\%$
- $EBL_1 \sim 5 \text{ pkts}$
- $-LTER_2 \sim 66\%$
- $EBL_2 \sim 22 \text{ pkts}$

And Vice-Versa When One Channel Is Good

• Channels:

- $-LTER_1 \sim 11\%$
- $EBL_1 \sim 10 \text{ pkts}$
- $-LTER_2 \sim 4\%$
- $EBL_2 \sim 1 \text{ pkt}$

Taking Stock of Where We Stand

- Assuming that
 - We "know" the channel statistics, and
 - Our performance requirements stress channel quality
- Diversity seems to still be potentially helpful in spite of
 - Simplistic (not always optimal) transmission policy
 - Highly variable channel characteristics
 - Lack of precise transmission timing
- So lets now drop our assumptions
 - We know nothing about channel statistics, but
 - We are willing to pay some coding overhead (insurance premium...)

Unknown Channels One Average, One Bad

• Channels:

- $-LTER_1 \sim 11\%$
- $EBL_1 \sim 5$ pkts
- $-LTER_2 \sim 66\%$
- $EBL_2 \sim 22 \text{ pkts}$
- Qualitatively similar results as with known channels, but quantitatively quite different
 - Improvements now limited to increasing probability of successful message delivery

What Can We Conclude So Far?

- In spite of the 802.11 channel fluctuations and the impact of end-systems behaviors, the benefits of diversity (mostly) remain
 - Especially so for reasonably stringent performance requirements
 - Even for unknown channels, diversity rarely "hurts"
 - And the benefits are most visible when one of the channels is BAD
- So, how often are 802.11 channels bad, and can diversity help survive bad channel periods?
 - Monitoring the benefits of diversity over "extended" periods

Diversity As a Performance Stabilizer

Two channels:

- $LTER_1 \sim 11.4\%$
- $EBL_1 \sim 10 \text{ pkts}$
- $-LTER_2 \sim 29.2\%$
- $EBL_2 \sim 11 \text{ pkts}$
- *ER* measured over a 200 messages sliding window
 - Mean value improves by 6%/30%
 - Variance decreases by 60%/90%

Emulating Sender Configurations That Involve Only One NIC

- Motivation
 - Don't want twice the hardware
 - Frequency agility is "possible"
 - Use a single NIC to tune to different frequency bands
 - But, today's channel switching times are high
 - Currently about 25-30 msec, which corresponds to ~23-27 packets
- Approach: "Sticky" transmission policies
 - Channel selection applies to block of packets
 - But, there is a trade-off
 - Large blocks minimize overhead, but diminish burst evasion capability

Sticky Policies

- Basic conclusions are as expected
 - Sticky policies can help realize the "right" trade-off and achieve some of the benefits of diversity in spite of switching overhead

• But

 Benefits drop-off fast unless overhead is of the order of a packet transmission time or less

• And

 We have not accounted for any overhead related to APs association if required

Last But Not Least, What About Channel Correlation?

- Correlated channels all but eliminate the benefits of diversity...
- Our investigation suggests that non-overlapping 802.11 frequency bands are reasonably uncorrelated
 - Correlation coefficient between 0 and 0.1
 - Similar to observations by others
 - Similar findings in the presence of a man-in-the-middle interferer
- A few potential reasons for this.
 - Non-overlapping frequency bands are sufficiently far apart
 - As pointed out by others, multipath fading appears to be the dominant source of errors

Summary

- Our initial investigation indicates that
 - Given our performance metric of *message* rate and a willingness to tolerate a non-negligible coding overhead, then
 - Diversity is a reasonable "insurance policy" against the wide range of fluctuations that 802.11 channels experience
- In practice, two NICs are required to take advantage of it
 - Sticky policies offer a possible alternative with a single NIC, but
 - Lower switching delays than what is currently feasible are still needed
 - And a number of open issues remain

Extensions & Open Issues

- Consider other performance metrics than message rate
 - Adaptive applications such as TCP
- We assumed that user transmissions did not affect channel errors but what if everyone uses diversity?
 - Impact of diversity on channel collisions in 802.11 (and others) systems
- We focused solely on open-loop policies
 - Some (simple) feedback information might provide meaningful improvements
 - What feedback for what improvement?
- And then there are quite a few things to take care of to truly build a system that *hides* all the details of diversity from the users