Cloud Computing @ WashU with a closer look at (spot) pricing

Roch Guérin UC Riverside – December 1st, 2017

Cloud Computing @ WashU

- Multiple faculty and students working on a number of cloud computing problems*
 - Middleware (real-time messaging RTM)
 - Virtualization
 - Scheduling and networking stack (RT-Xen & VATC)
 - Distributed computing support
 - And pricing
- Today, I'll give a very brief overview of some of those works and then talk mostly about pricing (joint work w/ J. Song)
- * C. Gill, R. Jain, B. Kocoloski (joining on Jan. 1st), C. Li, J. Liu, C. Lu, J. Song, etc.

Real-Time Messaging Middleware

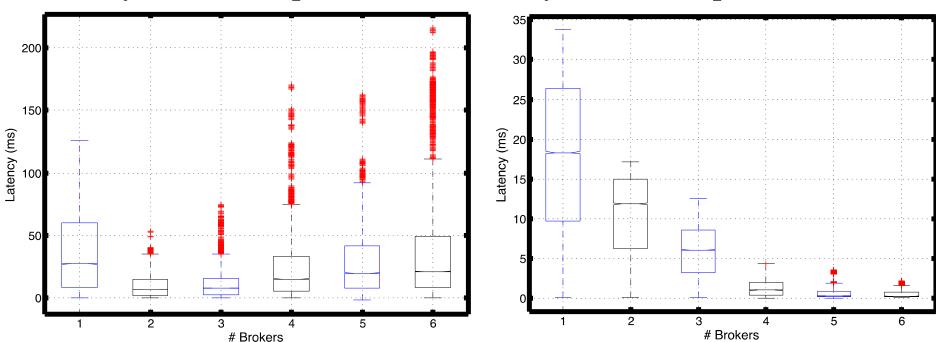
- Why? Increasingly important in platform as a service offerings
 - Numerous IoT and 5G (edge computing) applications rely on it
- Basic requirements include
 - Scalability (large number of devices and connections)
 - Service differentiation (both latency sensitive and throughput sensitive applications)
- Current RTM system under development
 - Based on NSQ code base
 - Extensions include prioritization (per topic) and rate-limiting (for highpriority topics)
 - Scalability through distribution of publishers across multiple brokers
 - Main challenges: Address tension between load-balancing and rate limiting as a function of application profile

🐺 Washington University in St. Louis

Engineering

Load-Balancing vs. Rate Limiting

• Asynchronous publishers • Synchronous publishers



- Trade-off between processing and rate-limiting delays for asynchronous publishers, while synchronous publishers "always" benefit from distribution across more resources
 - Basic issue: How is application burstiness affected by load distribution?

From Clouds to Real-Time Clouds

- Why real-time clouds? They are critical to many largescale Internet-of-Things applications
 - Smart transportation, smart manufacturing, smart grid
 - Industry trend: AWS IoT, IBM IoT Foundation
- Cloud systems for real-time applications.
 - Latency guarantees for tasks running in virtual machines (VMs).
 - Resource sharing between real-time and non-real-time VMs.
 - Coordinated scheduling, traffic shaping, rate limiting
 - End-to-end resource guarantees, from CPU to network
- Service differentiation in Xen
 - **RT-Xen** \rightarrow real-time VM scheduling in a virtualized host.
 - **VATC** \rightarrow real-time network I/O in a virtualized host

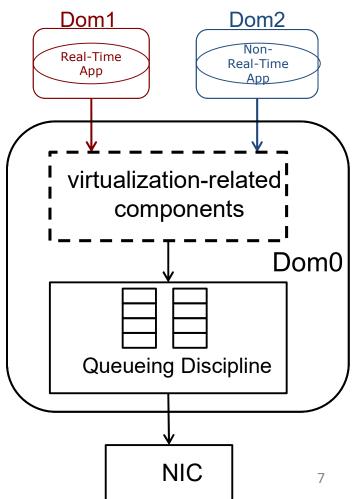
Real-Time Virtualization with RT-Xen

- Real-time schedulers in the Xen hypervisor.
- Provide real-time guarantees to tasks in VMs.
- Incorporated in Xen 4.5.

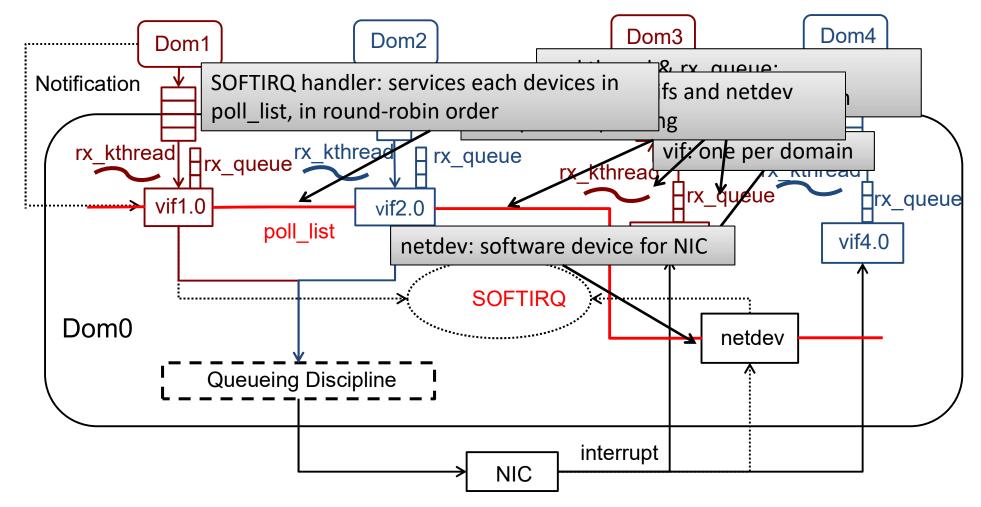
S. Xi, M. Xu, C. Lu, L. Phan, C. Gill, O. Sokolsky and I. Lee, Real-Time Multi-Core Virtual Machine Scheduling in Xen, ACM International Conference on Embedded Software (EMSOFT'14), October 2014.

VATC: Service Differentiation in Xen's Networking Stack

- Networking in Xen (and many other virtualization systems) is realized through a "special" Linux VM (dom0)
 - Virtual interfaces (vif's) provide VMs with network access through dom0
 - dom0 leverages Linux components, *e.g.*, Qdisc layer



Network Access Through Dom0



Problem Statement & Solution

• Current Limitations

- Transmit side
 - Poll list is served in round-robin order \Rightarrow Possibility of priority inversions
- Receive side
 - Rx_ktrhead can only be scheduled after SOFTIRQ handler completes
 ⇒ Possibility of priority inversions

Approach

- Rely on kernel threads instead of softirq
 - Each priority assigned dedicated & prioritized tx and rcv kernel threads
 - Dedicated rcv kernel thread to handle interrup from NIC
 - Threads scheduled by SCHED_FIFO preemptive scheduler
- Dedicated per priority tx and rx queues
- First version implemented and described in
 C. Li, S. Xi, C. Lu, C. Gill, R. Guerin, *"Prioritizing Soft Real-Time Network Traffic in Virtualized Hosts Based on Xen."* RTAS'15

Washington University in St.Louis

Distributed Computing in the Cloud

Unallocated \rightarrow *opportunistic instances*

- Can we leverage both unallocated and idle reserved instances to do useful work, *i.e.*, a la HTCondor?
- Requirements
 - "Transparent" to current services
 - Little to no changes to user code running on opportunistic instances

A Two-Prong Effort

- 1. Scheduler that determines the usage classification of different resources
- 2. An efficient check-pointing mechanism for opportunistic jobs that need to be terminated
- Some challenges
 - Partitioning of unallocated resources, *e.g.*, available to opportunistic instances or not
 - Pre-configuration of opportunistic instances, *e.g.*, based on user job profiles
 - Allocation of opportunistic jobs to available instances, *e.g.*, favoring free opportunistic instances over idle reserved instances
 - Job specific check-pointing decisions, *e.g.*, omit check-pointing of "short" jobs, dynamically vary check-pointing interval based on system load, etc.
 - Termination decisions, *i.e.*, which opportunistic instance to terminate when required?

Pricing in Clouds

- Motivated by
 - As mentioned earlier, ubiquity of clouds as compute platform
 - Diversity of cloud customers in terms of job valuation, size, timeliness of execution, etc.
 - And the fact that pricing is a powerful knob to match users to services and improve "efficiency"
- And as alluded to, there are indeed a variety of cloud service offerings
 - *e.g.*, reserved, on-demand, and spot instances

Our Focus

- A semi-monopolistic cloud provider like AWS
- A range of services, but in particular services that trade-off price for timeliness of execution
 - On-demand vs. spot instances (more on this in a moment)
- Questions we seek to answer
 - When does having both services help the provider improve revenue?
 - How should prices be set?
 - What are effective bidding strategies for users?
 - Generate highest "utility"?

Our Setup – On the Provider Side

- Monopoly, *i.e.*, we ignore the possible impact of competition
- Focus on spot service (when is it useful?)
 - Spot price is periodically updated
 - Customers register bids ahead of each period
 - Jobs run (stop) whenever their bid exceeds (falls below) the spot price
 - Jobs are charged spot price (not bid) whenever they run
- Unconstrained cloud resources (capacity is not a constraint)
 - A reasonable assumption for most large cloud providers and supported by recent empirical work*

* O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, "Deconstructing Amazon EC2 spot instance pricing," ACM Trans. Econ. Comput., vol. 1, no. 3, September 2013.

- Spot prices are selected randomly from a given set of prices
 - Known price distribution
 - Also supported by empirical findings*, and Amazon makes historical spot prices available
- Goal: pick prices and price distribution to maximize expected revenue
 - Note: If answer is to use a *single* price, then a spot = on-demand

Engineering

Our Setup – On the Customer Side

- Heterogeneous job requirements:
 - Job valuation (v)
 - Job timelinsess / sensitivity to delay (κ)
 - Job execution time (*t*)
- Customer Decisions:
 - Whether or not to purchase the (spot) service
 - How to bid for the service
- Goal: For each job, pick a bidding strategy Γ that maximizes a job's expected *utility* (over possible spot price realizations)

$$U(t, v, \kappa, \Gamma) = V(t, v, \kappa, \Gamma) - P(t, v, \kappa, \Gamma) - D(t, v, \kappa, \Gamma)$$

where

- $V(t, v, \kappa, \Gamma)$: job valuation (realized only at job completion)
- $P(t, v, \kappa, \Gamma)$: expected payment (for the spot service)
- $D(t, v, \kappa, \Gamma)$: expected delay penalty (given bidding strategy Γ)

Customers bid if and only if $U(v, t, \kappa, \Gamma) > 0$

Job profiles (v,κ,t) are private information, but their distribution is known to the service provider

Two Primary Questions

- How should provider select prices to maximize expected revenue given known distribution of customer/job profiles?
 - Assuming rational users
- How should customers decide whether or not to bid, and if they bid, how to bid to maximize a job's expected utility?
 - Assuming known price distribution and knowledge of job profile

Model Parameters

- Service provider
 - A discrete set of prices $p_1 < p_2 < ... < p_n$ from which to choose spot prices
 - Distribution π_1 , π_2 , ..., π_n for prices
- Customers: Job profiles (v,κ,t) and bidding strategy (Γ)
 - v and κ have joint density function $q(v, \kappa)$ and are independent of t
 - Job sensitivity to execution delay depends on its valuation, but not its execution time (big jobs are more valuable, but not necessarily more or less sensitive to delay)
 - Variable correlation coefficient, $\rho \in [-1,1]$
 - *t* distributed according to f(t)
 - Γ is a function of (v, κ, t) and pricing

Engineering

Optimization Framework

Service provider

- Maximize expected revenue
- Find $p_1 < p_2 < ... < p_n$ and $\pi_1 < \pi_2 < ... < \pi_n$

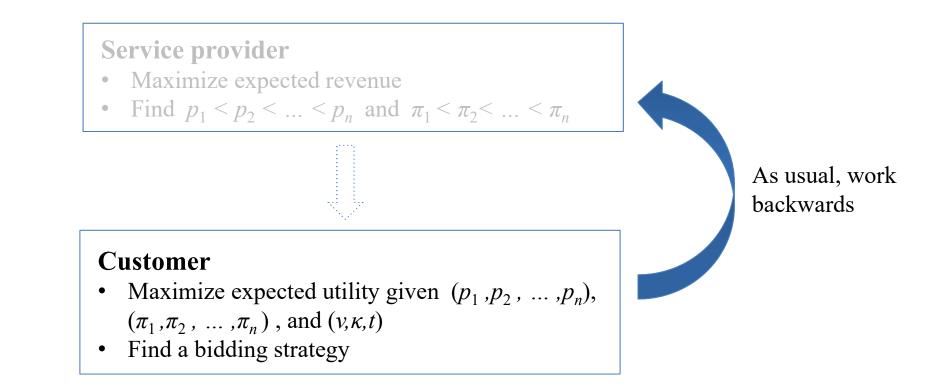
Customer

- Maximize expected utility given (p_1, p_2, \dots, p_n) , $(\pi_1, \pi_2, \dots, \pi_n)$, and (v, κ, t)
- Find a bidding strategy

🐺 Washington University in St. Louis

Engineering

Optimization Framework



Customer's Optimization

$$\Gamma^* = \arg\max_{\Gamma} U(v, t, \kappa, \Gamma)$$

- Some simplifying assumptions
 - Linear delay penalty

 $U(t, v, \kappa, \Gamma) = vt - P(t, v, \kappa, \Gamma) - \kappa(T(t, v, \kappa, \Gamma) - t),$

where $T(t, v, \kappa, \Gamma)$ is the expected completion time

- Jobs are not terminated once bidding starts (positive utility in expectation over jobs with the same profile)
- Numerical exploration when relaxing those assumptions

Optimal Bidding Strategy

$$\Gamma^* = \arg\max_{\Gamma} U(v, t, \kappa, \Gamma)$$

- Fixed bidding strategy is optimal for jobs of size 1
 - In other words, a job profile (1, v, κ) maps to a static bidding value b^*
- Can be extended to a job of arbitrary size by induction
- b* can be obtained through a simple linear search
 It belongs to the set of spot prices [p₁, p₂, ..., p_n]
- Result is, however, fragile to relaxations of our simplifying assumptions, *i.e.*, job termination and non-linear delay penalties

Engineering

Properties of Optimal Bidding Strategy

$$b^* = \min \underset{p_i \leq p_n}{\operatorname{arg\,min}} \left\{ \frac{\sum_{p_j \leq p_i} \pi_j p_j}{\alpha(p_i)} + \kappa \left(\frac{1}{\alpha(p_i)} - 1 \right) \right\}$$

where $\alpha(p_i) = \sum_{p_j \le p_i} \pi_j$ (fraction of time the job executes if bidding a p_i) $p_{j \le p_i}$

- If a customer decides to bid for job (t, v, κ)
 - b^* is determined solely by κ (independent of v and t) - b^* increases with κ
- The decision to bid, however, depends on *v* (job's valuation affects its ability to generate positive utility)

Service Provider's Optimization

$$(p^*,\pi^*) = \operatorname*{arg\,max}_{p,\pi} R(p,\pi)$$

Where $R(p,\pi)$ is expected revenue given pricing (p,π) Recall:

- *t* is independent of *v* and κ
- -v and κ are correlated.

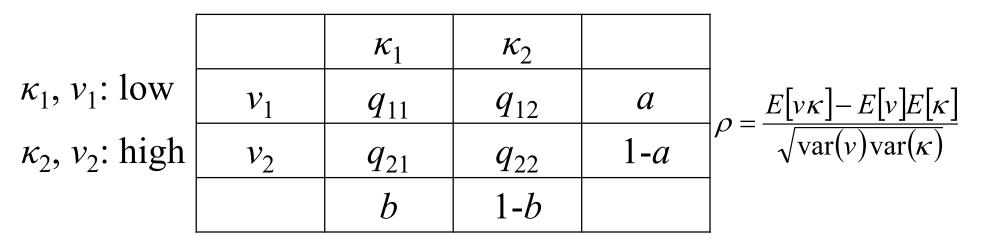
$$R_{p,\pi} = \iiint_{\nu,\kappa,t} f(t)q(\nu,\kappa)P(t,\Gamma_{p,\pi}^*(t,\nu,\kappa))d\nu d\kappa dt$$

where

f(t): density function of job length $q(v, \kappa)$: joint density function of v and κ

Gaining Insight with a Discrete Model

• Users belong to four different "categories"



high/low valuation + high/low sensitivity to delay

- Fix marginal
- Vary correlation

Effect of correlation

Optimal Pricing Strategy

- For a given density function $q(v, \kappa)$ with fixed marginal and correlation coefficient ρ , there exists $\rho^* \in (0,1]$ such that
 - When $\rho \le \rho^*$, a single price strategy is optimal, *i.e.*, a spot service generates no more expected revenue than an on-demand service
 - When $\rho > \rho^*$, a two-price strategy is optimal, *i.e.*, a spot service can offer greater revenue than an on-demand service alone

Note 1: ρ*∈(0,1] implies that if jobs' valuation and sensitivity to delay are independent, then a spot service is not useful
Note 2: The result is not robust to changes in our simplifying assumptions, *i.e.*, in general ρ* can span the full range [-1,1]

Washington University in St. Louis

Perfectly positively correlated

Some Intuition

Perfectly negatively correlated

	κ_1 can bid low	κ_2 has to bid high			κ_1 can bid low	κ_2 has to bid high
v ₁ can't afford high bid	0	1/2		v ₁ can't afford high bid	1/2	0
v ₂ can afford high bid	1/2	0	, ,	v ₂ can afford high bid	0	1/2

A two-price spot service has a positive impact if jobs with large delay sensitivity pay more. This in turn has the potential to 1) exclude jobs with large delay sensitivity and small valuation, and 2) extract a smaller price from jobs with small delay sensitivity and large valuation. 1) and 2) have to remain small

Testing for Robustness

- Two main results
 - 1. Optimality of fixed bidding strategy
 - 2. Presence of a correlation threshold below which spot service is of no benefit
- Two primary assumptions and one secondary
 - 1a. Jobs are never terminated once they start bidding
 - 1b. Delay penalty increases linearly
 - 2. Binary job profile
- Which results still hold when relaxing assumptions?
 - Allow termination, non-linear delay penalties, continuous job profiles
 - Because optimality of fixed bidding is easily found to be fragile, focus is on existence of correlation threshold (currently investigating how bad fixed bidding can be)
- Approach is numerical in nature
 - Test for threshold where single price solution stops being optimal. In other words, we don't identify the optimal policy, only that single price stops being optimal

Allowing Job Termination

• Jobs are terminated when their expected residual utility becomes negative terminate if $vt - p(p_i)(t - t_0) - \kappa \left(\tau - t + \frac{t - t_0}{\alpha(p_i)}\right) \le 0$

for linear penalty and fixed bidding (t_0 is execution time so far, and τ is elapsed time)

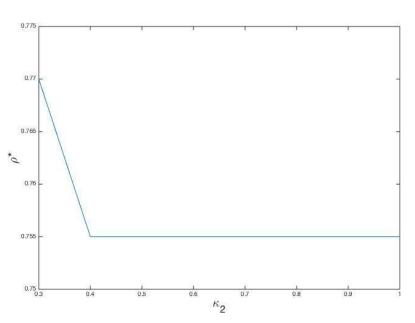
• Both fixed and dynamic bidding are considered

- Dynamic bidding policy calls for solving a dynamic program

• Tested for different binary job profiles and combinations of job sizes (termination depends on job size)

Allowing Job Termination

- Preliminary findings
 - Threshold remains present under termination for both fixed and dynamic bidding
 - Termination appears to lower provider revenue though less so when dynamic bidding is used (revenue drop from early termination exceeds higher participation that termination allows)
 - Dynamic bidding seems to increase ρ^*



Nonlinear Delay Penalty Functions

- Piecewise-linear delay penalty function
 - "Convex" delay function
 - $D_1(\kappa, t) = \kappa \max\{0, T(t) t T^*\}$
 - "Concave" delay function
 - $D_2(\kappa, t) = \kappa \min\{T(t) t, T^*\}$

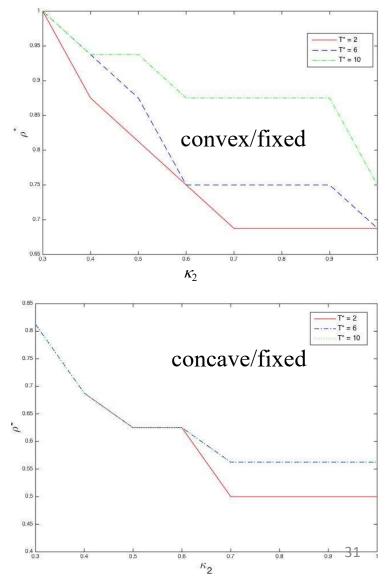
 T^* is a threshold, *t* is the job's execution time, and T(t) > t is the job's total completion time

- Again, we investigate fixed and dynamic bidding configurations
 - For simplicity, we initially preclude termination

Engineering

Nonlinear Delay Penalty Functions

- Preliminary findings
 - Threshold remains present under termination for both fixed and dynamic bidding
 - Dynamic bidding seems to again yield larger ρ^*



More General User Profiles

 $v_{\min} = 0, \kappa_{\min} = 0.$ projection for $v_{\text{max}} = 0.9$ 0.98 $v_{\rm max} \in [0.1, 1.5],$ 0.95 $\kappa_{\rm max} \in [0.1, 1.5].$ 0.94 $^{*}\mathcal{Q}$ 0.92 Gaussian copula 0.9 marginals: uniform 0.88 distributions 0.98 0.85 0.98 Optimal pricing search limited $K_{\rm max}$ to one and two prices

For all $(v_{\text{max}}, \kappa_{\text{max}})$ pairs, the result still holds, *i.e.*, optimality of one vs. more than one price depends on $\rho > \rho^*$

Some Closely Related Works

Fixed and Market Pricing for Cloud Services -V. Abhishek, I.A. Kash, and P. Key, NetEcon 12 (updated and expanded 2017 version)

Revenue Maximization for Cloud Computing Services

- C. Kilcioglu and C. Maglaras, SIGMETRICS 15

- Cloud computing services under (mostly) infinite capacity.
- Jobs are heterogeneous in valuation, delay sensitivity.
- Result: spot service is useful under some conditions.
- Neither work explicitly studies the role of correlation.

Summary and Extensions

- Summary
 - Results highlight the role of correlation in determining the value of offering a spot service
- Extensions: Develop more systematic guidelines to assess
 - Penalty of using fixed bidding
 - Benefits and disadvantages (to users and providers) of early job termination
 - Impact of non-linearities in delay sensitivity
- Explore other pricing mechanisms, *e.g.*, auctions when supporting opportunistic jobs