
Cloud Computing @ WashU
with a closer look at (spot) pricing

Roch Guérin
UC Riverside – December 1st, 2017

Cloud Computing @ WashU
• Multiple faculty and students working on a number of cloud computing

problems*
– Middleware (real-time messaging – RTM)

– Virtualization
• Scheduling and networking stack (RT-Xen & VATC)

– Distributed computing support

– And pricing

• Today, I’ll give a very brief overview of some of those works and then
talk mostly about pricing (joint work w/ J. Song)

* C. Gill, R. Jain, B. Kocoloski (joining on Jan. 1st), C. Li, J. Liu, C. Lu,

J. Song, etc.

2

Real-Time Messaging Middleware
• Why? – Increasingly important in platform as a service offerings

– Numerous IoT and 5G (edge computing) applications rely on it

• Basic requirements include
– Scalability (large number of devices and connections)

– Service differentiation (both latency sensitive and throughput sensitive
applications)

• Current RTM system under development
– Based on NSQ code base

– Extensions include prioritization (per topic) and rate-limiting (for high-
priority topics)

– Scalability through distribution of publishers across multiple brokers

– Main challenges: Address tension between load-balancing and rate
limiting as a function of application profile

3

Load-Balancing vs. Rate Limiting
• Asynchronous publishers • Synchronous publishers

4

• Trade-off between processing and rate-limiting delays for
asynchronous publishers, while synchronous publishers
“always” benefit from distribution across more resources
– Basic issue: How is application burstiness affected by load

distribution?

From Clouds to Real-Time Clouds
• Why real-time clouds? They are critical to many large-

scale Internet-of-Things applications
• Smart transportation, smart manufacturing, smart grid
• Industry trend: AWS IoT, IBM IoT Foundation

• Cloud systems for real-time applications.
• Latency guarantees for tasks running in virtual machines (VMs).
• Resource sharing between real-time and non-real-time VMs.
• Coordinated scheduling, traffic shaping, rate limiting
• End-to-end resource guarantees, from CPU to network

• Service differentiation in Xen
• RT-Xen real-time VM scheduling in a virtualized host.

• VATC real-time network I/O in a virtualized host

5

Real-Time Virtualization with RT-Xen

• Real-time schedulers in the Xen hypervisor.

• Provide real-time guarantees to tasks in VMs.

• Incorporated in Xen 4.5.

RT-Xen

https://sites.google.com/site/realtimexen/

S. Xi, M. Xu, C. Lu, L. Phan, C. Gill, O. Sokolsky and I. Lee, Real-Time Multi-Core Virtual Machine
Scheduling in Xen, ACM International Conference on Embedded Software (EMSOFT'14), October 2014.
S. Xi, M. Xu, C. Lu, L. Phan, C. Gill, O. Sokolsky and I. Lee, Real-Time Multi-Core Virtual Machine
Scheduling in Xen, ACM International Conference on Embedded Software (EMSOFT'14), October 2014.

6

VATC: Service Differentiation in
Xen’s Networking Stack

• Networking in Xen (and
many other virtualization
systems) is realized through
a “special” Linux VM
(dom0)
– Virtual interfaces (vif’s)

provide VMs with network
access through dom0

– dom0 leverages Linux
components, e.g., Qdisc layer

NIC

Queueing Discipline

Dom0

Real-Time
App

Dom1
Non-

Real-Time
App

Dom2

virtualization-related
components

7

Network Access Through Dom0

8

NIC

Dom1 Dom4

Dom0

vif1.0

netdev

poll_list vif4.0

rx_queue

Dom3

vif3.0

rx_queue

interrupt

Notification

rx_kthread rx_kthread

SOFTIRQ

Queueing Discipline

rx_queuerx_kthread

Dom2

vif2.0

rx_queuerx_kthread vif: one per domain

rx_kthread & rx_queue:
for RX from vif to guest domain

netdev: software device for NIC

poll_list: holds all vifs and netdev
with packets pending

SOFTIRQ handler: services each devices in
poll_list, in round-robin order

Problem Statement & Solution

9

• Current Limitations
– Transmit side

• Poll list is served in round-robin order  Possibility of priority inversions

– Receive side
• Rx_ktrhead can only be scheduled after SOFTIRQ handler completes

 Possibility of priority inversions

• Approach
– Rely on kernel threads instead of softirq

• Each priority assigned dedicated & prioritized tx and rcv kernel threads

• Dedicated rcv kernel thread to handle interrup from NIC

• Threads scheduled by SCHED_FIFO preemptive scheduler

– Dedicated per priority tx and rx queues

– First version implemented and described in

C. Li, S. Xi, C. Lu, C. Gill, R. Guerin , “Prioritizing Soft Real-Time
Network Traffic in Virtualized Hosts Based on Xen.” RTAS’15

Distributed Computing in the Cloud

• Can we leverage both
unallocated and idle
reserved instances to do
useful work, i.e., a la
HTCondor?

• Requirements
– “Transparent” to current

services

– Little to no changes to user
code running on
opportunistic instances

10

Reserved instances
busy/idle

On-demand
instances

Unallocated → opportunistic instances

A Two-Prong Effort

1. Scheduler that determines the usage classification of different resources

2. An efficient check-pointing mechanism for opportunistic jobs that need to
be terminated

• Some challenges
– Partitioning of unallocated resources, e.g., available to opportunistic

instances or not

– Pre-configuration of opportunistic instances, e.g., based on user job profiles

– Allocation of opportunistic jobs to available instances, e.g., favoring free
opportunistic instances over idle reserved instances

– Job specific check-pointing decisions, e.g., omit check-pointing of “short”
jobs, dynamically vary check-pointing interval based on system load, etc.

– Termination decisions, i.e., which opportunistic instance to terminate when
required?

11

Pricing in Clouds

• Motivated by
– As mentioned earlier, ubiquity of

clouds as compute platform

– Diversity of cloud customers in
terms of job valuation, size,
timeliness of execution, etc.

– And the fact that pricing is a
powerful knob to match users to
services and improve “efficiency”

• And as alluded to, there are indeed
a variety of cloud service offerings
– e.g., reserved, on-demand, and spot

instances
12

Our Focus

• A semi-monopolistic cloud provider like AWS
• A range of services, but in particular services that

trade-off price for timeliness of execution
– On-demand vs. spot instances (more on this in a

moment)

• Questions we seek to answer
– When does having both services help the provider

improve revenue?
• How should prices be set?

– What are effective bidding strategies for users?
• Generate highest “utility”?

13

Our Setup – On the Provider Side
• Monopoly, i.e., we ignore the possible impact of competition

• Focus on spot service (when is it useful?)
– Spot price is periodically updated

• Customers register bids ahead of each period

• Jobs run (stop) whenever their bid exceeds (falls below) the spot price

• Jobs are charged spot price (not bid) whenever they run

• Unconstrained cloud resources (capacity is not a constraint)
– A reasonable assumption for most large cloud providers and supported by recent

empirical work*
* O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Deconstructing Amazon EC2

spot instance pricing,” ACM Trans. Econ. Comput., vol. 1, no. 3, September 2013.

• Spot prices are selected randomly from a given set of prices
– Known price distribution

– Also supported by empirical findings*, and Amazon makes historical spot prices
available

• Goal: pick prices and price distribution to maximize expected revenue
– Note: If answer is to use a single price, then a spot = on-demand 14

Our Setup – On the Customer Side
• Heterogeneous job requirements:

– Job valuation (v)

– Job timelinsess / sensitivity to delay (κ)

– Job execution time (t)

• Customer Decisions:

– Whether or not to purchase the (spot) service

– How to bid for the service

• Goal: For each job, pick a bidding strategy Γ that maximizes a job’s expected
utility (over possible spot price realizations)

U(t, v, κ, Γ) = V(t, v, κ, Γ) – P(t, v, κ, Γ) – D(t, v, κ, Γ)

where

– V(t, v, κ, Γ): job valuation (realized only at job completion)

– P(t, v, κ, Γ): expected payment (for the spot service)

– D(t, v, κ, Γ): expected delay penalty (given bidding strategy Γ)

Customers bid if and only if U(v, t, κ, Γ) > 0 15

Job profiles (v,κ,t) are
private information, but
their distribution is known
to the service provider

Two Primary Questions

• How should provider select prices to maximize
expected revenue given known distribution of
customer/job profiles?
– Assuming rational users

• How should customers decide whether or not
to bid, and if they bid, how to bid to maximize
a job’s expected utility?
– Assuming known price distribution and knowledge

of job profile

16

Model Parameters

• Service provider
– A discrete set of prices p1 < p2 < … < pn from which to choose

spot prices

– Distribution π1 , π2 , … , πn for prices

• Customers: Job profiles (v,κ,t) and bidding strategy (Γ)
– v and κ have joint density function q(v, κ) and are independent of t

• Job sensitivity to execution delay depends on its valuation, but not its
execution time (big jobs are more valuable, but not necessarily more or
less sensitive to delay)

• Variable correlation coefficient, ρ  [-1,1]

– t distributed according to f(t)

– Γ is a function of (v,κ,t) and pricing

17

Optimization Framework

18

Service provider
• Maximize expected revenue
• Find p1 < p2 < … < pn and π1 < π2< … < πn

Customer
• Maximize expected utility given (p1 ,p2 , … ,pn),

(π1 ,π2 , … ,πn), and (v,κ,t)
• Find a bidding strategy

Optimization Framework

19

Service provider
• Maximize expected revenue
• Find p1 < p2 < … < pn and π1 < π2< … < πn

Customer
• Maximize expected utility given (p1 ,p2 , … ,pn),

(π1 ,π2 , … ,πn) , and (v,κ,t)
• Find a bidding strategy

As usual, work
backwards

Customer’s Optimization

20

• Some simplifying assumptions
– Linear delay penalty

where T(t, v, κ, Γ) is the expected completion time

– Jobs are not terminated once bidding starts (positive
utility in expectation over jobs with the same profile)

• Numerical exploration when relaxing those
assumptions

G* = argmax
G

U v, t,k,G()

U(t, v,k,G) = vt -P(t, v,k,G)-k (T (t, v,k,G)- t),

Optimal Bidding Strategy

21

• Fixed bidding strategy is optimal for jobs of size 1
– In other words, a job profile (1, v, κ) maps to a static

bidding value b*

• Can be extended to a job of arbitrary size by induction

• b* can be obtained through a simple linear search
– It belongs to the set of spot prices [p1,p2,…,pn]

• Result is, however, fragile to relaxations of our
simplifying assumptions, i.e., job termination and
non-linear delay penalties

G* = argmax
G

U v, t,k,G()

Properties of Optimal Bidding Strategy

where (fraction of time the job executes if
bidding a pi)

• If a customer decides to bid for job (t, v, κ)
– b* is determined solely by κ (independent of v and t)
– b* increases with κ

• The decision to bid, however, depends on v
(job’s valuation affects its ability to generate
positive utility)

22





















-=

 


1

)(

1

)(
minargmin*

ii

pp jj

pp pp

p
b ij

ni 
k





(pi) =  j

pjpi



Service Provider’s Optimization

Where R(p,π) is expected revenue given pricing (p,π)
Recall:

– t is independent of v and κ
– v and κ are correlated.

where
f(t): density function of job length
q(v, κ): joint density function of v and κ 23

()),(maxarg**,
,




pRp
p

=

Rp, = f (t)q(v,k)
v,k ,tòòò P(t,G p,

* (t, v,k))dvdkdt

Gaining Insight with a Discrete Model

• Users belong to four different “categories”

high/low valuation + high/low sensitivity to delay

• Fix marginal
• Vary correlation

Effect of correlation

24

κ1, v1: low

κ2, v2: high

κ1 κ2

v1 q11 q12 a

v2 q21 q22 1-a

b 1-b

     
() ()k

kk
varvar v

EvEvE -
=

Optimal Pricing Strategy

• For a given density function q(v, κ) with fixed marginal and
correlation coefficient ρ, there exists ρ*(0,1] such that
• When ρ ≤ ρ*, a single price strategy is optimal, i.e., a spot service

generates no more expected revenue than an on-demand service

• When ρ > ρ*, a two-price strategy is optimal, i.e., a spot service
can offer greater revenue than an on-demand service alone

Note 1: ρ*(0,1] implies that if jobs’ valuation and sensitivity to
delay are independent, then a spot service is not useful

Note 2: The result is not robust to changes in our simplifying
assumptions, i.e., in general ρ* can span the full range
[-1,1]

25

Some Intuition

26

κ1

can bid
low

κ2

has to
bid high

v1

can’t
afford

high bid

0 1/2

v2

can
afford

high bid

1/2 0

κ1

can bid
low

κ2

has to
bid high

v1

can’t
afford

high bid

1/2 0

v2

can
afford

high bid

0 1/2

Perfectly negatively correlated Perfectly positively correlated

A two-price spot service has a positive impact if jobs with large delay sensitivity pay
more. This in turn has the potential to 1) exclude jobs with large delay sensitivity and
small valuation, and 2) extract a smaller price from jobs with small delay sensitivity and
large valuation. 1) and 2) have to remain small

Testing for Robustness
• Two main results

1. Optimality of fixed bidding strategy

2. Presence of a correlation threshold below which spot service is of no benefit

• Two primary assumptions and one secondary
1a. Jobs are never terminated once they start bidding

1b. Delay penalty increases linearly

2. Binary job profile

• Which results still hold when relaxing assumptions?
– Allow termination, non-linear delay penalties, continuous job profiles

– Because optimality of fixed bidding is easily found to be fragile, focus is on
existence of correlation threshold (currently investigating how bad fixed bidding
can be)

• Approach is numerical in nature
– Test for threshold where single price solution stops being optimal. In other words,

we don’t identify the optimal policy, only that single price stops being optimal
27

Allowing Job Termination

• Jobs are terminated when their expected residual utility
becomes negative

terminate if

for linear penalty and fixed bidding (t0 is execution time
so far, and  is elapsed time)

• Both fixed and dynamic bidding are considered

– Dynamic bidding policy calls for solving a dynamic program

• Tested for different binary job profiles and combinations
of job sizes (termination depends on job size)

28

()() () 00
0 







 -
----

i
i p

tt
tttppvt


k

Allowing Job Termination
• Preliminary findings

– Threshold remains present
under termination for both
fixed and dynamic bidding

– Termination appears to
lower provider revenue
though less so when
dynamic bidding is used
(revenue drop from early
termination exceeds higher
participation that
termination allows)

– Dynamic bidding seems to
increase ρ*

29

Nonlinear Delay Penalty Functions

• Piecewise-linear delay penalty function
– “Convex” delay function

• D1(κ, t) = κ max{0, T(t) –t – T*}

– “Concave” delay function
• D2(κ, t) = κ min{T(t) – t, T*}

T* is a threshold, t is the job’s execution time, and
T(t)>t is the job’s total completion time

• Again, we investigate fixed and dynamic
bidding configurations
– For simplicity, we initially preclude termination

30

Nonlinear Delay Penalty Functions

• Preliminary findings
– Threshold remains present

under termination for both
fixed and dynamic bidding

– Dynamic bidding seems to
again yield larger ρ*

31

convex/fixed

concave/fixed

k2

kmax

*

More General User Profiles
• vmin = 0, κmin = 0.

•

•

• Gaussian copula

– marginals: uniform
distributions

• Optimal pricing search limited
to one and two prices

32

For all (vmax, κmax) pairs, the result still holds, i.e., optimality
of one vs. more than one price depends on ρ > ρ*

],5.1,1.0[max v

].5.1,1.0[max k

projection for vmax = 0.9

Some Closely Related Works
Fixed and Market Pricing for Cloud Services

-V. Abhishek, I.A. Kash, and P. Key, NetEcon 12
(updated and expanded 2017 version)

Revenue Maximization for Cloud Computing Services
- C. Kilcioglu and C. Maglaras, SIGMETRICS 15

• Cloud computing services under (mostly) infinite
capacity.

• Jobs are heterogeneous in valuation, delay sensitivity.
• Result: spot service is useful under some conditions.

• Neither work explicitly studies the role of correlation.

33

Summary and Extensions

• Summary
– Results highlight the role of correlation in

determining the value of offering a spot service

• Extensions: Develop more systematic
guidelines to assess

• Penalty of using fixed bidding
• Benefits and disadvantages (to users and providers) of

early job termination
• Impact of non-linearities in delay sensitivity

• Explore other pricing mechanisms, e.g.,
auctions when supporting opportunistic jobs

34

